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Lista de Exerćıcios 10

10.1) Sejam X1, . . . , Xn uma amostra aleatória. Obtenha o EMV de θ para as seguintes distri-
buições:

(a) X ∼ Poisson(θ);

(b) X ∼ Geométrica(θ), onde P (X = x) = (1− θ)x−1θ, para x = 1, 2, . . .;

(c) X ∼ Exponencial(θ), com fdp f(x) = 1
θe

−x/θ, x > 0 (parametrização pela média).

10.2) Considere uma amostra aleatória X1, . . . , Xn de uma população com densidade dada por:

f(x|θ) = θxθ−1, 0 < x < 1, θ > 0

(a) Encontre o EMV de θ.

(b) Mostre que a estat́ıstica T = −
∑n

i=1 ln(Xi) é suficiente para θ.

10.3) Suponha que a velocidade de moléculas de um gás siga a distribuição de Maxwell-Boltzmann,
com densidade:

f(x) =
x2e−x/(2θ)

2θ3
, x > 0, θ > 0.

Obtenha o estimador de máxima verossimilhança de θ.

10.4) Seja X1, . . . , Xn uma amostra aleatória da distribuição de Pareto, com densidade:

f(x) = θkθx−(θ+1), x ≥ k, θ > 0,

onde k > 0 é uma constante conhecida. Encontre o EMV de θ.

10.5) Seja X ∼ Bernoulli(p). Sabemos que o EMV de p é p̂ = X.

(a) Um pesquisador deseja estimar a “Razão de Chances” (Odds Ratio), definida por
ψ = p

1−p . Encontre o EMV de ψ.

(b) Encontre o EMV da variância de X, ou seja, de g(p) = p(1− p).

10.6) Seja X1, . . . , Xn uma amostra de N(µ, σ2).

(a) Escreva a função de log-verossimilhança para o vetor θ = (µ, σ2).

(b) Derive e iguale a zero para encontrar o sistema de equações de score.

(c) Mostre que σ̂2MV = 1
n

∑
(Xi −X)2.
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(d) Compare σ̂2MV com a variância amostral S2. Qual deles é viesado?

10.7) Em economia, a distribuição Lognormal é frequentemente utilizada para modelar a renda
de populações. Dizemos que X ∼ Lognormal(µ, σ2) se Y = ln(X) segue uma distribuição
Normal(µ, σ2). A densidade de X é dada por:

f(x;µ, σ2) =
1

x
√
2πσ2

exp

{
−(lnx− µ)2

2σ2

}
, x > 0.

Seja X1, . . . , Xn uma amostra aleatória dessa população.

(a) Escreva a função de log-verossimilhança ℓ(µ, σ2).

(b) Derive o sistema de equações de score para o vetor de parâmetros θ = (µ, σ2).

(c) Resolva o sistema e mostre que os estimadores de máxima verossimilhança são a
média e a variância (viesada) dos logaritmos dos dados:

µ̂ =
1

n

n∑
i=1

ln(Xi) e σ̂2 =
1

n

n∑
i=1

(lnXi − µ̂)2.

10.8) Considere X ∼ Exponencial(λ) com média 1/λ. O EMV é λ̂ = 1/X.

(a) Calcule a Informação de Fisher I1(λ).

(b) Determine a distribuição assintótica de λ̂.

(c) Um engenheiro quer estimar a confiabilidade no tempo t = 1, dada por R(1) = e−λ.
Use o Método Delta para encontrar a distribuição assintótica do estimador de R(1).

10.9) O número de falhas em um sistema de TI segue uma distribuição de Poisson. Em 4
semanas, foram observadas as seguintes quantidades de falhas: 2, 5, 3, 6.

(a) Estime o parâmetro λ (taxa semanal) por MV.

(b) Estime a probabilidade de que na próxima semana não ocorra nenhuma falha (P (X =
0)).

10.10) Os tempos entre chegadas de clientes em uma loja (em minutos) foram:

2,5 1,8 4,0 0,5 3,2

Assumindo distribuição Exponencial(λ):

(a) Obtenha a estimativa de MV para a taxa λ e para a média 1/λ.

(b) Estime a probabilidade de um intervalo ser maior que 3 minutos.

10.11) Julgue as afirmações abaixo como Verdadeiras ou Falsas, justificando brevemente:

(a) O Estimador de Máxima Verossimilhança (EMV) é sempre não-viesado para qualquer
tamanho de amostra.

(b) Se θ̂ é o EMV de θ, então
√
θ̂ é necessariamente o EMV de

√
θ.
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(c) Sob condições de regularidade, a variância assintótica do EMV atinge o Limite Inferior
de Cramér-Rao.

(d) Se T (X) é uma estat́ıstica suficiente para θ, então o Estimador de Máxima Verossi-
milhança deve depender dos dados apenas através de T (X).

(e) A resolução da equação de score ( ∂ℓ∂θ = 0) sempre resulta em uma fórmula expĺıcita
para o estimador, dispensando o uso de métodos numéricos iterativos.

(f) Encontrar uma raiz da equação de score é condição suficiente para garantir que en-
contramos o máximo global da função de verossimilhança.

10.12) A função de verossimilhança L(θ;x) é frequentemente confundida com a função de densi-
dade conjunta f(x; θ). Explique a diferença fundamental entre as duas e por que a integral
de L(θ;x) em relação a θ não é necessariamente igual a 1.

10.13) O gráfico da função de log-verossimilhança ℓ(θ) pode ser ”mais pontiagudo”(curvatura
acentuada) ou ”mais achatado”. Qual a relação entre a curvatura dessa função no ponto
de máximo e a precisão (variância) do estimador? Relacione sua resposta com o conceito
de Informação de Fisher.

10.14) Um atuário está modelando a frequência de sinistros de uma carteira de automóveis uti-
lizando uma distribuição da Famı́lia Exponencial. Ele optou pelo Método da Máxima
Verossimilhança (MV) para estimar o parâmetro θ de interesse. Com base na teoria da
estimação pontual, julgue os itens a seguir como Verdadeiro ou Falso:

(a) Se o atuário precisar estimar a probabilidade de não ocorrência de sinistros (e−θ),

basta calcular e−θ̂MV . Essa propriedade é exclusiva do Método de Máxima Verossi-
milhança e não é garantida, em geral, pelo Método dos Momentos.

(b) O Estimador de Máxima Verossimilhança é preferido na prática atuarial porque ga-
rante, necessariamente, que a estimativa seja não-viesada (ou seja, E[θ̂] = θ) para
qualquer tamanho de amostra.

(c) Sob condições de regularidade, à medida que o tamanho da amostra (histórico de
sinistros) aumenta, a variância do estimador de MV converge para o Limite Inferior
de Cramér-Rao, tornando-o assintoticamente eficiente.

10.15) Em uma situação onde o estimador pelo Método dos Momentos (EMM) fornece um resul-
tado diferente do Estimador de Máxima Verossimilhança (EMV), qual dos dois geralmente
é prefeŕıvel para grandes amostras? Cite duas vantagens teóricas do EMV que justificam
essa escolha.
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Respostas:

10.1) (a) θ̂MV = X

(b) θ̂MV = 1
X

(c) θ̂MV = X

10.2) (a) θ̂MV = − n∑n
i=1 lnxi

10.3) θ̂MV = X
6

10.4) θ̂MV = n∑n
i=1 ln(xi/k)

10.5) (a) ψ̂MV = X
1−X

(b) ̂V ar(X)MV = X(1−X)

10.6) (a) ℓ(µ, σ2) = −n
2 ln(2π)−

n
2 ln(σ

2)− 1
2σ2

∑n
i=1(xi − µ)2

(b) − n
2σ̂2 + 1

2(σ̂2)2
∑n

i=1(xi − µ̂)2 = 0

(c) σ̂2MV = 1
n

∑n
i=1(Xi −X)2

(d) σ̂2MV é viesado, enquanto S2 não.

10.7) (a) ℓ(µ, σ2) = −
∑

lnxi − n
2 ln(2π)−

n
2 ln(σ

2)− 1
2σ2

∑
(lnxi − µ)2

(b)

{
∂ℓ
∂µ = 1

σ2

∑
(lnxi − µ) = 0

∂ℓ
∂σ2 = − n

2σ2 + 1
2(σ2)2

∑
(lnxi − µ)2 = 0

(c) µ̂MV =
∑n

i=1 lnxi

n e σ̂2MV = 1
n

∑n
i=1(lnxi − µ̂)2

10.8) (a) I1(λ) = −E
[
− 1

λ2

]
= 1

λ2

(b)
√
n(λ̂− λ)

d−→ N(0, λ2) ou λ̂
aprox∼ N

(
λ, λ

2

n

)
(c) R̂(1)

aprox∼ N
(
e−λ, λ

2e−2λ

n

)
10.9) (a) λ̂MV = 4 falhas por semana.

(b) P̂ (X = 0) = e−4 ≈ 0, 0183

10.10) (a) Estimativa da média (1/λ): µ̂MV = x = 2, 4 minutos
Estimativa da taxa (λ): λ̂MV = 1

2,4 ≈ 0, 4167 clientes por minuto

(b) P̂ (X > 3) ≈ 0, 2865

10.11) Julgue as afirmações abaixo como Verdadeiras ou Falsas, justificando brevemente:

(a) Verdadeiro. Esta afirmação decorre da Propriedade da Invariância dos estimadores de
máxima verossimilhança. Ela estabelece que se θ̂ é o EMV de θ, então para qualquer
função g(θ) (como a raiz quadrada), o EMV de g(θ) é dado por g(θ̂).
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(b) Verdadeiro. Esta é a propriedade da Eficiência Assintótica. Sob condições de regulari-
dade, a variância do EMV converge para o inverso da Informação de Fisher (1/In(θ)),
que é exatamente o Limite Inferior de Cramér-Rao, tornando-o o estimador com a
menor variância posśıvel entre os estimadores consistentes para grandes amostras.

(c) Verdadeiro. Pelo Teorema da Fatoração de Neyman-Fisher, a verossimilhança pode
ser escrita como L(θ) = g(T (x); θ)h(x). Ao maximizar em relação a θ, o termo h(x) é
irrelevante, e a maximização depende dos dados exclusivamente através da estat́ıstica
suficiente T (X).

(d) Falso. A equação de score frequentemente resulta em expressões transcedentais ou
complexas que não possuem solução anaĺıtica fechada. Exemplos incluem a es-
timação dos parâmetros de forma da distribuição Gama ou os coeficientes em uma
Regressão Loǵıstica. Nestes casos, o uso de métodos numéricos iterativos (como
Newton-Raphson ou Fisher-Scoring) é obrigatório.

(e) Falso. A condição ∂ℓ
∂θ = 0 determina apenas um ponto cŕıtico, que pode ser um

máximo local, um mı́nimo local ou um ponto de sela. Para garantir que é um máximo
global, é necessário: (1) verificar a segunda derivada (Hessiana negativa definida) e
(2) comparar o valor da verossimilhança no ponto cŕıtico com os valores nas fronteiras
do espaço paramétrico.

10.12) A diferença reside na definição de variável e parâmetro fixo. Na densidade f(x; θ), o
parâmetro θ é fixo e x varia sobre o espaço amostral. Por definição de probabilidade,
sua integral em relação a x é sempre 1. Na verossimilhança L(θ;x), os dados x são fixos
(observados) e θ varia sobre o espaço paramétrico. Como L mede a plausibilidade e não a
probabilidade de θ (que não é aleatório na inferência clássica), não há restrição matemática
que faça sua integral em relação a θ ser igual a 1.

10.13) A curvatura da função de log-verossimilhança é inversamente proporcional à variância do
estimador. Curva “pontiaguda” (alta curvatura) indica que o máximo é bem definido e
os dados fornecem muita informação sobre θ. Isso implica alta Informação de Fisher e,
consequentemente, baixa variância (alta precisão). Já a curva “achatada” (baixa curva-
tura) indica incerteza na localização do máximo. Implica baixa Informação de Fisher e
alta variância (baixa precisão). Matematicamente, a variância assintótica é o inverso da
curvatura esperada: V ar(θ̂) ≈ 1

I(θ) .

10.14) (a) Verdadeiro

(b) Falso. O EMV é frequentemente viesado em pequenas amostras. O que o EMV
garante é ser consistente (o viés desaparece com n→ ∞).

(c) Verdadeiro

10.15) Geralmente, o Estimador de Máxima Verossimilhança (EMV) é prefeŕıvel. Uma vantagem
teórica é a Eficiência Assintótica (para grandes amostras, o EMV possui a menor variância
posśıvel entre os estimadores consistentes – atinge o Limite Inferior de Cramér-Rao), sendo
frequentemente mais preciso que o EMM. Outra vantagem é o Prinćıpio da Invariância (o
EMV de uma função do parâmetro g(θ) é dado simplesmente por g(θ̂) ). O Método dos

Momentos não garante essa propriedade (ex: E[X
2
] ̸= µ2).
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