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Lista de Exercicios 10

Sejam X1, ..., X, uma amostra aleatoria. Obtenha o EMV de 6 para as seguintes distri-
buicoes:

(a) X ~ Poisson(0);

(b) X ~ Geométrica(f), onde P(X =) = (1 —0)*10, paraz =1,2,.

(c) X ~ Exponencial(f), com fdp f(x) = %e‘m/ 9 2>0 (parametrlza(;ao pela média).
Considere uma amostra aleatéria X1, ..., X, de uma populagdo com densidade dada por:
f(z|o) =021, 0<z<1, 6>0

(a) Encontre o EMV de 6.

(b) Mostre que a estatistica T'= — Y ; In(X;) ¢é suficiente para 6.

Suponha que a velocidade de moléculas de um gas siga a distribuicao de Maxwell-Boltzmann,
com densidade:

12—/ (26)
f(:r):T, x>0,0>0.
Obtenha o estimador de maxima verossimilhanca de 6.
Seja Xq, ..., X, uma amostra aleatéria da distribuicado de Pareto, com densidade:

fl@) =020 x>k 6>0,
onde k > 0 é uma constante conhecida. Encontre o EMV de 6.
Seja X ~ Bernoulli(p). Sabemos que o EMV de p é p = X.

(a) Um pesquisador deseja estimar a “Razao de Chances” (Odds Ratio), definida por
P = 1’%}0. Encontre o EMV de 1.

(b) Encontre o EMV da variancia de X, ou seja, de g(p) = p(1 — p).
Seja X1,..., X, uma amostra de N(u,o?).

(a) Escreva a funcio de log-verossimilhanca para o vetor 8 = (u, 0?).
(b) Derive e iguale a zero para encontrar o sistema de equagoes de score.

(c) Mostre que 53, = L 3(X; — X)2.



(d) Compare 532, com a variancia amostral S?. Qual deles é viesado?
10.7) Em economia, a distribuigdo Lognormal é frequentemente utilizada para modelar a renda
de populagoes. Dizemos que X ~ Lognormal(y,?) se Y = In(X) segue uma distribuicao
Normal(y,02). A densidade de X é dada por:

1 (Inz — u)?
flz;p,02) = exp{— , x>0.
( ) xV2no? 20°
Seja X1, ..., X, uma amostra aleatéria dessa populacao.

(a) Escreva a funcio de log-verossimilhanca £(j, o2).
(b) Derive o sistema de equacdes de score para o vetor de parametros 8 = (u,o2).

(c) Resolva o sistema e mostre que os estimadores de maxima verossimilhanca sao a
média e a variancia (viesada) dos logaritmos dos dados:

1 o 1 _
M:n21n(xi) e 02:n2(1nxi—u)2.
1= 1=

10.8) Considere X ~ Exponencial(\) com média 1/X. O EMV ¢é A = 1/X.

(a) Calcule a Informacao de Fisher I7 ().
(b) Determine a distribuicio assintética de A.

(c) Um engenheiro quer estimar a confiabilidade no tempo ¢ = 1, dada por R(1) = e~

Use o Método Delta para encontrar a distribuigao assintética do estimador de R(1).

10.9) O ndmero de falhas em um sistema de TI segue uma distribuicdo de Poisson. Em 4
semanas, foram observadas as seguintes quantidades de falhas: 2, 5, 3, 6.

(a) Estime o parametro A\ (taxa semanal) por MV.

(b) Estime a probabilidade de que na préxima semana nao ocorra nenhuma falha (P(X =
0)).
10.10) Os tempos entre chegadas de clientes em uma loja (em minutos) foram:
25 1,8 40 05 3,2
Assumindo distribuigdo Exponencial(\):

(a) Obtenha a estimativa de MV para a taxa A e para a média 1/A.

(b) Estime a probabilidade de um intervalo ser maior que 3 minutos.
10.11) Julgue as afirmagoes abaixo como Verdadeiras ou Falsas, justificando brevemente:

(a) O Estimador de Maxima Verossimilhanga (EMV) é sempre nao-viesado para qualquer
tamanho de amostra.

(b) Se 6 é 0o EMV de 6, entdo V8 6 necessariamente o EMV de V.
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(¢) Sob condigoes de regularidade, a variancia assint6tica do EMV atinge o Limite Inferior
de Cramér-Rao.

(d) Se T'(X) é uma estatistica suficiente para 6, entdo o Estimador de Maxima Verossi-
milhanga deve depender dos dados apenas através de T'(X).

(e) A resolugao da equagao de score (% = 0) sempre resulta em uma férmula explicita

para o estimador, dispensando o uso de métodos numéricos iterativos.

(f) Encontrar uma raiz da equagao de score é condigao suficiente para garantir que en-
contramos o maximo global da fun¢ao de verossimilhanga.

A funcao de verossimilhanca L(6;x) é frequentemente confundida com a funcao de densi-
dade conjunta f(x;60). Explique a diferenca fundamental entre as duas e por que a integral
de L(0;x) em relagdo a 6 nao é necessariamente igual a 1.

O gréafico da funcao de log-verossimilhanca ¢(f) pode ser "mais pontiagudo” (curvatura
acentuada) ou "mais achatado”. Qual a relagao entre a curvatura dessa fungdo no ponto
de méximo e a precisao (variancia) do estimador? Relacione sua resposta com o conceito
de Informacao de Fisher.

Um atuério estda modelando a frequéncia de sinistros de uma carteira de automéveis uti-
lizando uma distribuicdo da Familia Exponencial. Ele optou pelo Método da Maxima
Verossimilhanca (MV) para estimar o parametro 6 de interesse. Com base na teoria da
estimacao pontual, julgue os itens a seguir como Verdadeiro ou Falso:

(a) Se o atudrio precisar estimar a probabilidade de nio ocorréncia de sinistros (e=?),

basta calcular eV, Essa propriedade é exclusiva do Método de Méxima Verossi-
milhanga e nao é garantida, em geral, pelo Método dos Momentos.

(b) O Estimador de Méxima Verossimilhanga é preferido na prética atuarial porque ga-
rante, necessariamente, que a estimativa seja nao-viesada (ou seja, F[f] = ) para
qualquer tamanho de amostra.

(¢) Sob condigoes de regularidade, & medida que o tamanho da amostra (histérico de
sinistros) aumenta, a variancia do estimador de MV converge para o Limite Inferior
de Cramér-Rao, tornando-o assintoticamente eficiente.

Em uma situagao onde o estimador pelo Método dos Momentos (EMM) fornece um resul-
tado diferente do Estimador de Maxima Verossimilhanca (EMV), qual dos dois geralmente
é preferivel para grandes amostras? Cite duas vantagens tedricas do EMV que justificam
essa escolha.
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(C 8%4 - Zz 1(X X)

A%JV é viesado, enquanto 52 nao.

Up,0?) ==Y Inz; — ¥ In(27) — 5 In(0?) — # S(Inw; — p)?
2 = L3 (Inz;—p) =0

(b) $% 7 "a | > _
W—_F_'_Q(UQQZ(Inmi_/’L) =0

(¢) fingy = == 0 52 0 = 15" (Inw; — i)
(&) (N =—E[-3%] =%
(b) va(h — A) -5 N(0, %) ou X XN (A, %)

(©) B 7 N (e, 22)
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(a) Apv = 4 falhas por semana.
(b) P(X =0) =e* ~0,0183

2,4 minutos

(a) Estimativa da média (1/\): p My = T =
~ 0,4167 clientes por minuto

Estimativa da taxa (\): AMV =

(b) P(X > 3) ~0,2865

10.11) Julgue as afirmagoes abaixo como Verdadeiras ou Falsas, justificando brevemente:

(a) Verdadeiro. Esta afirmacao decorre da Propriedade da Invariancia dos estimadores de
méxima verossimilhanga. Ela estabelece que se § ¢ o EMV de 6, entao para qualquer
funcao g(#) (como a raiz quadrada), o EMV de ¢(#) é dado por ¢(0).
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(b) Verdadeiro. Esta é a propriedade da Eficiéncia Assintética. Sob condigoes de regulari-
dade, a varidncia do EMV converge para o inverso da Informacao de Fisher (1/1,,(6)),
que é exatamente o Limite Inferior de Cramér-Rao, tornando-o o estimador com a
menor variancia possivel entre os estimadores consistentes para grandes amostras.

(c) Verdadeiro. Pelo Teorema da Fatoragdo de Neyman-Fisher, a verossimilhanca pode
ser escrita como L(0) = g(T'(x);#)h(x). Ao maximizar em relagao a 6, o termo h(x) é
irrelevante, e a maximizacao depende dos dados exclusivamente através da estatistica
suficiente T'(X).

(d) Falso. A equacdo de score frequentemente resulta em expressoes transcedentais ou
complexas que nao possuem solucao analitica fechada. Exemplos incluem a es-
timagao dos parametros de forma da distribuicao Gama ou os coeficientes em uma
Regressao Logistica. Nestes casos, o uso de métodos numéricos iterativos (como
Newton-Raphson ou Fisher-Scoring) é obrigatério.

(e) Falso. A condicao % = 0 determina apenas um ponto critico, que pode ser um

maximo local, um minimo local ou um ponto de sela. Para garantir que é um maximo
global, é necessério: (1) verificar a segunda derivada (Hessiana negativa definida) e
(2) comparar o valor da verossimilhanga no ponto critico com os valores nas fronteiras
do espago paramétrico.

A diferenga reside na definicdo de varidvel e pardmetro fixo. Na densidade f(x;6), o
parametro 0 é fixo e x varia sobre o espaco amostral. Por definicao de probabilidade,
sua integral em relacdo a x é sempre 1. Na verossimilhanca L(f;x), os dados x sao fixos
(observados) e 6 varia sobre o espago paramétrico. Como L mede a plausibilidade e nao a
probabilidade de 6 (que nao é aleatério na inferéncia classica), ndo ha restrigao matemética
que faga sua integral em relacao a 6 ser igual a 1.

A curvatura da funcao de log-verossimilhanca é inversamente proporcional & varidncia do
estimador. Curva “pontiaguda” (alta curvatura) indica que o méximo é bem definido e
os dados fornecem muita informacao sobre 8. Isso implica alta Informacao de Fisher e,
consequentemente, baixa variancia (alta precisao). J& a curva “achatada” (baixa curva-
tura) indica incerteza na localizagdo do méaximo. Implica baixa Informagao de Fisher e
alta varidncia (baixa precisdo). Matematicamente, a varidncia assintética é o inverso da
curvatura esperada: Var(f) ~ ﬁ.

(a) Verdadeiro

(b) Falso. O EMV ¢ frequentemente viesado em pequenas amostras. O que o EMV
garante é ser consistente (o viés desaparece com n — 00).

(c) Verdadeiro

Geralmente, o Estimador de Méxima Verossimilhanga (EMV) é preferivel. Uma vantagem
tedrica é a Eficiéncia Assintética (para grandes amostras, o EMV possui a menor variancia
possivel entre os estimadores consistentes — atinge o Limite Inferior de Cramér-Rao), sendo
frequentemente mais preciso que o EMM. Outra vantagem é o Principio da Invariancia (o

~

EMV de uma fungao do pardmetro ¢g(f) é dado simplesmente por g(6) ). O Método dos
Momentos nao garante essa propriedade (ex: F [YQ] # p?).



