Processamento Out-of-Core
com duckdbe DBI noR

ESTAT0109 - Mineracao de Dados em Estatistica

Prof. Dr. Sadraque E. F. Lucena
sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/mineracao

http://sadraquelucena.github.io/mineracao

Objetivo da Aula

e Aprender a manipular grandes bases de dados no R.

e Conhecer os pacotes duckdb e DBI.

e Fazer consultas usando a linguagem SQL dentro do R.

O Muro da Memoria RAM

e ORé, por natureza, uma ferramenta in-memory. E comum usarmos o
comando: meus_dados <- read.csv("arquivo_grande.csv").

e Problema: O que acontece se arquivo_grande.csv tem 50 GB e seu
notebook tem 16 GB de RAM?

= O Rtenta alocar 50 GB de espaco na RAM.

= O sistema operacional tenta compensar usando swap (disco), o que
torna o processo astronomicamente lento.

= Na maioria dos casos, a sessao do R simplesmente trava ou € morta
pelo sistema.

e Solucao: Em vez de trazer os dados para o R, nés lemos e processamos 0s
dados diretamente no disco, e trazemos para a RAM apenas o resultado
final (que geralmente é pequeno).

» |sso é chamado de processamento Out-of-Core (ou On-Disk).

= Podemos usar os pacotes duckdb e DBI para fazé-lo.

IIIIIIIIIIII

O Pacote duckdb

e Funciona como seu assistente inteligente para dados grandes.
e Imagine que seus dados sao uma biblioteca gigante:
= Método tradicional: Trazer todos os livros para sua mesa (RAM).

= Com DuckDB: Pedir ao bibliotecario que consulte os livros nas estantes
(disco) e traga apenas a resposta.

IIIIIIIIIIII

O Pacote duckdb

e Eum sistema de gerenciamento de banco de dados (SGBD) analitico, in-
process e colunar. Ou seja:

= Analitico (OLAP): Otimizado para consultas complexas, agregacoes e
filtros (ex: GROUP BY, SUM, AVG).

= In-Process: Nao é um servidor (como PostgreSQL ou MySQL). Ele roda
dentro da sua sessao R. Nao ha instalacao, configuracao ou
gerenciamento de servidor. Apenas install.packages("duckdb") e
pronto.

m Colunar: Esta é a chave. Bancos de dados tradicionais armazenam
dados por linha. O duckdb armazena por coluna.

e Sesuaconsulta éSELECT VARIAVEL1, COUNT(*) ...,eleléapenasa

coluna VARIAVEL1 do disco, ignorando todas as outras (nome, data, etc.).
|sso resulta em uma velocidade maior.

e duckdb implementa uma versao muito abrangente e moderna do padrao
SQL (Structured Query Language).

O Pacote DBI

e DBI (Database Interface) é um pacote que fornece uma camada de
abstracao universal para comunicacao com bancos de dados no R.

e Ele define um conjunto de funcdes consistentes:
= dbConnect(): parainiciar a conexao.
= dbGetQuery(): paraenviaruma consulta e receber os dados de volta.
= dbDisconnect(): paraencerrar a conexao.

e Por que usa-lo?

= Consisténcia: Vocé usa as mesmas funcdes DBI para falar com duckdb,
RPostgres, RMariabDB, RSQL1ite, etc.

= Portabilidade: Seu cddigo R nao muda. Se amanha vocé decidir migrar
seu processo do duckdb (local) para um PostgreSQL (servidor), vocé
sO precisa alterar a linha do dbConnect ().

Como o SQL se encaixa?

e O DBI permite que o R fale com o duckdb, e alingua que eles usam é o
SQL (Structured Query Language).

e Em vez de usar comandos do pacte dplyr (como filter, group_by,
summarise) que operam em data.frames na memaoria, n0s escrevemos
uma string de consulta SQL (ex: SELECT ... FROM ... WHERE ...)

e NOS passamos essa string para o DBI (ex: dbGetQuery(...)).

e O DBI entrega a string ao duckdb.

e Oduckdb interpreta o SQL, otimiza a consulta, executa a operacao
diretamente no arquivo em disco, e retorna apenas o data. frame
resultante para o R.

IIIIIIIIIIII

Estrutura Geral de Uso

Este é o esquema de 5 passos para qualquer analise out-of-core com duckdb:

1. Carregar as bibliotecas na sesséao
Llibrary(DBI)
library(duckdb)

2. Crliar a conexédo com o banco de dados (para salvar as consu

Opcao A: Em memédria (réapido, mas volatil)
#con <- dbConnect(duckdb: :duckdb(), dbdir = ":memory:")

Opcao B: Persistente (recomendado)
con <- dbConnect(duckdb: :duckdb(),
dbdir = "meu_banco_analitico.duckdb")

3. Informar ao duckdb onde estédo os dados
Isso NAO carrega o CSV. Apenas cria um "ponteiro" para ele.
duckdb_register(con, "meus_dados", "arquivo_grande.csv'")

(R
hg UNIVERSIDADE

¥ FEDERAL DE
xgy SSSSSSS

Estrutura Geral de Uso

Este é o esquema de 5 passos para qualquer analise out-of-core com duckdb:

4. Fazer consultas ao banco usando SQL
resultado <- dbGetQuery(con, "SELECT COUNT(*) FROM meus_dados")

5. Encerrar a conexao e liberar os recursos
dbDisconnect(con, shutdown = TRUE)

e Como as cosultas usam SQL, vamos fazer uma breve explicacao sobre o
uso da linguagem.

888
IIIIIIIIIIII
o M| FEDERAL DE
R 5 SERGIPE

Estrutura Geral de uma Consulta SQL

Uma consulta SQL é como uma frase que descreve os dados que vocé deseja.
A ordem de escrita é quase sempre esta:

SELECT colunal, FUNCAO(coluna2) AS novo_nome
FROM nome_da_tabela

WHERE condicao_de_filtro (ex: ano = 2023)
GROUP BY coluna_de_agrupamento (ex: colunal)

ORDER BY coluna_de_ordenacao (ex: novo_nome) DESC
LIMIT 10

10

ADE
E

11

A instrucao SELECT

e Especifica as colunas que vocé quer ver no resultado final.

e Sempre vem acompanhada de FROM, que especifica de qual tabela os
dados devem ser lidos.

Sintaxe:

SELECT colunal, coluna2,
FROM nome_ tabela

e colunal, coluna2, ... sao ascolunasdastabelasquevocé quer

selecionar.
e nome_tabela representa o nome da tabela que contém os dados.

Exemplo: Suponha que temos uma tabela clientes e queremos selecionar
todas as colunas.

SELECT *
FROM clientes

IIIIIIIIIIII

12

A clausula WHERE

e Seleciona linhas que atendem a uma condicao.

Sintaxe:

SELECT colunal, coluna2,
FROM nome_tabela
WHERE condicao

Exemplos:

SELECT * SELECT *

FROM clientes FROM clientes
WHERE idade=30 WHERE idade>24

IIIIIIIIIIII

13

A clausula WHERE

WHERE aceita alguns operadores:

Operador Descricao Operador Descricao

= lgual <>ou != Diferente

> Maior que < Menor que

>= Maior ou igual <= Menor ou igual
BETWEEN Entre um intervalo LIKE Busca por um padrao
IN Para especificar

multiplos valores
possiveis para uma
coluna

Exemplo:

SELECT *
FROM clientes
WHERE Idade BETWEEN 20 AND 30

IIIIIIIIIIII

A instrucao GROUP BY

e Agrupa linhas com mesmo valor.

e Geralmente é usada com funcdes de agregacao (COUNT (), MAX(), MIN(),

SUM(), AVG()) para agrupar os resultados de uma ou mais colunas.

e Muito usada em conjunto com ORDER BY, para ordenacao dos resultados.

Sintaxe:

SELECT nomes_das_colunas
FROM nome_tabela

WHERE condicéao

GROUP BY nomes_das_colunas
ORDER BY nomes_das_colunas

Exemplo:

SELECT COUNT(ID_cliente), estado
FROM clientes

GROUP BY estado

ORDER BY COUNT(ID_cliente) DESC

LX)

14

IIIIIIIIIIII
EEEEEEEEE
EEEEEEE

Exemplo

Vamos usar o banco de dados sobre mortes ocorridas no Brasil em 2024
disponiveis no Sistema de Informacao sobre Mortalidade (SIM),

desenvolvido pelo Ministério da Saude. Os dados estao disponiveis em:
https://opendatasus.saude.gov.br/dataset/sim.

e Vamos usar o conjunto de dados D0240PEN. csv (6bitos ocorridos em
2024) e as variaveis:

= CODMUNOCOR: Codigo relativo ao municipio onde ocorreu o ébito

= CAUSABAS: Causa basica da declaracao de ébito

e Também vamos usar uma tabela do IBGE com os codigos e nomes dos

municipios obtida em https://www.ibge.gov.br/explica/codigos-dos-
municipios.php.

= Usaremos o0 arquivo
RELATORIO_DTB_BRASIL_2024_MUNICIPIOS.XxLs.

88
e UNIVERSIDADE
@ FEDERAL DE
.5 SERGIPE

15

https://opendatasus.saude.gov.br/dataset/sim
https://www.ibge.gov.br/explica/codigos-dos-municipios.php
https://www.ibge.gov.br/explica/codigos-dos-municipios.php

Exemplo: Preparacao do ambiente

0. Instalando os pacotes (apenas uma vez)
install.packages(c("DBI", "duckdb"))

1. Carregando pacotes.
library(duckdb)
library(DBI)

2. Especificando onde serdo armazenadas as consultas.
Isso prepara o "motor" do duckdb para receber comandos

con <- dbConnect(# 'con' val armazenar o objeto da conexao
duckdb: :duckdb(), # Especifica DuckDB como SGBD
dbdir = ":memory:" # as consultas serao salvas na memodria
e depols apagadas ao finalizar
#dbdir = "sim_obitos.duckdb" # cria uma arquivo p/ armazenar

0S resultados da consulta

)

3. Definindo o caminho para o arquivo gigante
para nao precisarmos escrever em toda consulta
caminho <- "/home/sadraque/Documentos/UFS/Disciplinas/2025.2/mil

16

IVERSIDADE
0“ FEDERAL DE
R 5 SERGIP!

Exemplo 1: Contagem total de linhas

Vamos contar quantas linhas ha na tabela de dados.

Criando a consulta SQL
SELECT COUNT(*): "Selecione a contagem de todas as linhas"
FROM '%s' sera substituido pelo caminho do arquivo
consult <- sprintf("SELECT COUNT(*) AS total
FROM '%s'", caminho)

Enviando a consulta e pegando o resultado.

0 duckdb vai ler o arquivo (sem carrega-lo) e retornar
apenas o resultado.

total_linhas <- dbGetQuery(con, consult)
total_linhas

total
1 1426346

17

IIIIIIIIIIII

(R
FEDERAL DE

EEEEEEE

Exemplo 2: Agregando por Municipio
Vamos contar o numero de 6bitos por codigo do municipio (CODMUNOCOR).

Montar a consulta SQL
consult <- sprintf("SELECT CODMUNOCOR, COUNT(*) AS total_obitos
FROM '%s'
GROUP BY CODMUNOCOR
ORDER BY total_obitos DESC",
caminho)

Envliar a consulta e pegar o resultado
obitos_por_municipio <- dbGetQuery(con, consult)

Ver as primelras 4 linhas do resultado
head(obitos_por_municipio, n = 4L)

CODMUNOCOR total_obitos

1 355030 89208
2 330455 61443
3 310620 23340
4 261160 22146

888
IIIIIIIIIIII
o | FEDERAL DE
R 5 SERGIPE

Exemplo 3: Adicionando filtragem

Vamos consultar o numero de dbitos por causas externas.

Criar a consulta SQL
CODMUNOCOR: Codigo do municipio onde ocorreu o Obito.
CAUSABAS: 'vol' a 'V99' sao os codigos da CID-10 para
aclidentes de transporte.
consult <- sprintf("SELECT CODMUNOCOR,
COUNT (CAUSABAS) AS obitos_acidentes
FROM '%s'

WHERE CAUSABAS BETWEEN 'VO1' AND 'V99'

GROUP BY CODMUNOCOR

ORDER BY obitos_acidentes DESC",

caminho)
obitos_acidentes_mun <- dbGetQuery(con, consult)
head(obitos_acidentes_mun, n = 4L) # primeiras 4 linhas

CODMUNOCOR obitos acidentes

1 130260 380
2 520870 367
3 261160 347
4 355030 281

(R
IIIIIIIIIIII
o | FEDERAL DE
R 5 SERGIPE

19

20

Exemplo 3: Adicionando filtragem

e Os codigos do SIM vém sem 0s nomes dos municipios.

e Precisamos cruzar com a tabela do IBGE para saber os nomes dos
municipios.

Llibrary(tidyverse)

tab_cod_ibge <- readxl::read_excel(
"/home/sadraque/Documentos/UFS/Disciplinas/2025.2/mineracao d¢
skip = 6, # Pula as 6 primeiras linhas
col_names = TRUE # Usa a 72 linha como nome das variaveils (d¢
) >
Limpar nomes das colunas
janitor::clean_names()

888
IIIIIIIIIIII
o M| FEDERAL DE
R 5 SERGIPE

21

Exemplo 3: Adicionando filtragem

tab_cod_ibge <- tab_cod_ibge |[>
Cria codigo de 6 digitos removendo o digito verificador
mutate(codigo_6digitos = str_sub(codigo_municipio_completo,
1, -2)) |>
Converte para numérico
mutate(codigo_6digitos = as.numeric(codigo_6digitos)) |>
Seleciona e renomela colunas finais
select(codigo = codigo_6digitos,
municiplio = nome_municipio,
UF = nome_uf)

(R
IIIIIIIIIIII
o | FEDERAL DE
R 5 SERGIPE

Exemplo 3: Adicionando filtragem

juntando o numero de acidentes e os nomes dos municipios
obitos_acidentes_nome_municiplios <- tab_cod_ibge |>
left_join(obitos_acidentes_mun,
by = c("codigo" = "CODMUNOCOR")) |[>
arrange(desc(obitos_acidentes)) # ordem decrescente
head(obitos_acidentes_nome_municiplos)

A tibble: 6 x 4

codigo municipio UF obitos_acidentes

<db 1> <chr> <chr> <db 1>
1 130260 Manaus Amazonas 380
2 520870 Goliania Goilas 367
3 261160 Recife Pernambuco 347
4 355030 Sado Paulo Sao Paulo 281
5 530010 Brasilia Distrito Federal 271
6 211130 Sao Luis Maranhéao 269

Encerrando a conexao
dbDisconnect(con, shutdown = TRUE)

888
IIIIIIIIIIII
o | FEDERAL DE
R 5 SERGIPE

23

Exercicios

1. Faca um histograma das idades das pessoas que vieram a 6bito em 2024
em todo o pais (note que primeiro vocé precisa fazer uma consulta na
base de dados).

2. Faca um grafico de barras contando os 6bitos por sexo para cada estado
do pais.

IIIIIIIIIIII

24

Conclusao e Revisao

 Problema: ARAM é limitada; dados massivos nao cabem nela.
e Solucgao: Processamento Out-of-Core (On-Disk).
e Ferramentas:
= duckdb: Motor que faz o trabalho pesado no disco.
= DBI: Interface que o R usa para se comunicar.
= SQL: Alinguagem que usamos para descrever o que queremos.

e Fluxo: dbConnect ->duckdb_register ->dbGetQuery (com SQL) ->
dbDisconnect.

e Verbos SQL:

e SELECT (0o qué) e GROUP BY (agregar)
e FROM (de onde) e ORDER BY (ordenar)
e WHERE (filtro de linha)

IIIIIIIIIIII

25

e Mais sobre a estrutura de SQL vocé pode encontrar em
https://www.w3schools.com/sql/.

https://www.w3schools.com/sql/

26

888

9 UNIVERSIDADE
o | FEDERAL DE
R 5 SERGIPE

