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Objetivo da Aula

e Aprender a manipular grandes bases de dados no R.

e Conhecer os pacotes duckdb e DBI.

e Fazer consultas usando a linguagem SQL dentro do R.



O Muro da Memoria RAM

e ORé, por natureza, uma ferramenta in-memory. E comum usarmos o
comando: meus_dados <- read.csv("arquivo_grande.csv").

e Problema: O que acontece se arquivo_grande.csv tem 50 GB e seu
notebook tem 16 GB de RAM?

= O Rtenta alocar 50 GB de espaco na RAM.

= O sistema operacional tenta compensar usando swap (disco), o que
torna o processo astronomicamente lento.

= Na maioria dos casos, a sessao do R simplesmente trava ou € morta
pelo sistema.

e Solucao: Em vez de trazer os dados para o R, nés lemos e processamos 0s
dados diretamente no disco, e trazemos para a RAM apenas o resultado
final (que geralmente é pequeno).

» |sso é chamado de processamento Out-of-Core (ou On-Disk).

= Podemos usar os pacotes duckdb e DBI para fazé-lo.
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O Pacote duckdb

e Funciona como seu assistente inteligente para dados grandes.
e Imagine que seus dados sao uma biblioteca gigante:
= Método tradicional: Trazer todos os livros para sua mesa (RAM).

= Com DuckDB: Pedir ao bibliotecario que consulte os livros nas estantes
(disco) e traga apenas a resposta.
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O Pacote duckdb

e Eum sistema de gerenciamento de banco de dados (SGBD) analitico, in-
process e colunar. Ou seja:

= Analitico (OLAP): Otimizado para consultas complexas, agregacoes e
filtros (ex: GROUP BY, SUM, AVG).

= In-Process: Nao é um servidor (como PostgreSQL ou MySQL). Ele roda
dentro da sua sessao R. Nao ha instalacao, configuracao ou
gerenciamento de servidor. Apenas install.packages("duckdb") e
pronto.

m Colunar: Esta é a chave. Bancos de dados tradicionais armazenam
dados por linha. O duckdb armazena por coluna.

e Sesuaconsulta éSELECT VARIAVEL1, COUNT(*) ...,eleléapenasa

coluna VARIAVEL1 do disco, ignorando todas as outras (nome, data, etc.).
|sso resulta em uma velocidade maior.

e duckdb implementa uma versao muito abrangente e moderna do padrao
SQL (Structured Query Language).



O Pacote DBI

e DBI (Database Interface) é um pacote que fornece uma camada de
abstracao universal para comunicacao com bancos de dados no R.

e Ele define um conjunto de funcdes consistentes:
= dbConnect(): parainiciar a conexao.
= dbGetQuery(): paraenviaruma consulta e receber os dados de volta.
= dbDisconnect(): paraencerrar a conexao.

e Por que usa-lo?

= Consisténcia: Vocé usa as mesmas funcdes DBI para falar com duckdb,
RPostgres, RMariabDB, RSQL1ite, etc.

= Portabilidade: Seu cddigo R nao muda. Se amanha vocé decidir migrar
seu processo do duckdb (local) para um PostgreSQL (servidor), vocé
sO precisa alterar a linha do dbConnect ().



Como o SQL se encaixa?

e O DBI permite que o R fale com o duckdb, e alingua que eles usam é o
SQL (Structured Query Language).

e Em vez de usar comandos do pacte dplyr (como filter, group_by,
summarise) que operam em data.frames na memaoria, n0s escrevemos
uma string de consulta SQL (ex: SELECT ... FROM ... WHERE ...)

e NOS passamos essa string para o DBI (ex: dbGetQuery(...)).

e O DBI entrega a string ao duckdb.

e Oduckdb interpreta o SQL, otimiza a consulta, executa a operacao
diretamente no arquivo em disco, e retorna apenas o data. frame
resultante para o R.
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Estrutura Geral de Uso

Este é o esquema de 5 passos para qualquer analise out-of-core com duckdb:

# 1. Carregar as bibliotecas na sesséao
Llibrary(DBI)
library(duckdb)

# 2. Crliar a conexédo com o banco de dados (para salvar as consu

# Opcao A: Em memédria (réapido, mas volatil)
#con <- dbConnect(duckdb: :duckdb(), dbdir = ":memory:")

# Opcao B: Persistente (recomendado)
con <- dbConnect(duckdb: :duckdb(),
dbdir = "meu_banco_analitico.duckdb")

# 3. Informar ao duckdb onde estédo os dados
# Isso NAO carrega o CSV. Apenas cria um "ponteiro" para ele.
duckdb_register(con, "meus_dados", "arquivo_grande.csv'")
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Estrutura Geral de Uso

Este é o esquema de 5 passos para qualquer analise out-of-core com duckdb:

# 4. Fazer consultas ao banco usando SQL
resultado <- dbGetQuery(con, "SELECT COUNT(*) FROM meus_dados")

# 5. Encerrar a conexao e liberar os recursos
dbDisconnect(con, shutdown = TRUE)

e Como as cosultas usam SQL, vamos fazer uma breve explicacao sobre o
uso da linguagem.
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Estrutura Geral de uma Consulta SQL

Uma consulta SQL é como uma frase que descreve os dados que vocé deseja.
A ordem de escrita é quase sempre esta:

SELECT colunal, FUNCAO(coluna2) AS novo_nome
FROM nome_da_tabela

WHERE condicao_de_filtro (ex: ano = 2023)
GROUP BY coluna_de_agrupamento (ex: colunal)

ORDER BY coluna_de_ordenacao (ex: novo_nome) DESC
LIMIT 10
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A instrucao SELECT

e Especifica as colunas que vocé quer ver no resultado final.

e Sempre vem acompanhada de FROM, que especifica de qual tabela os
dados devem ser lidos.

Sintaxe:

SELECT colunal, coluna2,
FROM nome_ tabela

e colunal, coluna2, ... sao ascolunasdastabelasquevocé quer

selecionar.
e nome_tabela representa o nome da tabela que contém os dados.

Exemplo: Suponha que temos uma tabela clientes e queremos selecionar
todas as colunas.

SELECT *
FROM clientes
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A clausula WHERE

e Seleciona linhas que atendem a uma condicao.

Sintaxe:

SELECT colunal, coluna2,
FROM nome_tabela
WHERE condicao

Exemplos:

SELECT * SELECT *

FROM clientes FROM clientes
WHERE idade=30 WHERE idade>24
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A clausula WHERE

WHERE aceita alguns operadores:

Operador Descricao Operador Descricao

= lgual <>ou != Diferente

> Maior que < Menor que

>= Maior ou igual <= Menor ou igual
BETWEEN  Entre um intervalo LIKE Busca por um padrao
IN Para especificar

multiplos valores
possiveis para uma
coluna

Exemplo:

SELECT *
FROM clientes
WHERE Idade BETWEEN 20 AND 30
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A instrucao GROUP BY

e Agrupa linhas com mesmo valor.

e Geralmente é usada com funcdes de agregacao (COUNT (), MAX( ), MIN(),

SUM( ), AVG()) para agrupar os resultados de uma ou mais colunas.

e Muito usada em conjunto com ORDER BY, para ordenacao dos resultados.

Sintaxe:

SELECT nomes_das_colunas
FROM nome_tabela

WHERE condicéao

GROUP BY nomes_das_colunas
ORDER BY nomes_das_colunas

Exemplo:

SELECT COUNT(ID_cliente), estado
FROM clientes

GROUP BY estado

ORDER BY COUNT(ID_cliente) DESC

LX)

14

IIIIIIIIIIII
EEEEEEEEE
EEEEEEE



Exemplo

Vamos usar o banco de dados sobre mortes ocorridas no Brasil em 2024
disponiveis no Sistema de Informacao sobre Mortalidade (SIM),

desenvolvido pelo Ministério da Saude. Os dados estao disponiveis em:
https://opendatasus.saude.gov.br/dataset/sim.

e Vamos usar o conjunto de dados D0240PEN. csv (6bitos ocorridos em
2024) e as variaveis:

= CODMUNOCOR: Codigo relativo ao municipio onde ocorreu o ébito

= CAUSABAS: Causa basica da declaracao de ébito

e Também vamos usar uma tabela do IBGE com os codigos e nomes dos

municipios obtida em https://www.ibge.gov.br/explica/codigos-dos-
municipios.php.

= Usaremos o0 arquivo
RELATORIO_DTB_BRASIL_2024_MUNICIPIOS.XxLs.
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Exemplo: Preparacao do ambiente

# 0. Instalando os pacotes (apenas uma vez)
# install.packages(c("DBI", "duckdb"))

# 1. Carregando pacotes.
library(duckdb)
library(DBI)

# 2. Especificando onde serdo armazenadas as consultas.
# Isso prepara o "motor" do duckdb para receber comandos

con <- dbConnect( # 'con' val armazenar o objeto da conexao
duckdb: :duckdb(), # Especifica DuckDB como SGBD
dbdir = ":memory:" # as consultas serao salvas na memodria
# e depols apagadas ao finalizar
#dbdir = "sim_obitos.duckdb" # cria uma arquivo p/ armazenar

# 0S resultados da consulta

)

# 3. Definindo o caminho para o arquivo gigante
# para nao precisarmos escrever em toda consulta
caminho <- "/home/sadraque/Documentos/UFS/Disciplinas/2025.2/mil
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Exemplo 1: Contagem total de linhas

Vamos contar quantas linhas ha na tabela de dados.

# Criando a consulta SQL
# SELECT COUNT(*): "Selecione a contagem de todas as linhas"
# FROM '%s' sera substituido pelo caminho do arquivo
consult <- sprintf("SELECT COUNT(*) AS total
FROM '%s'", caminho)

# Enviando a consulta e pegando o resultado.

# 0 duckdb vai ler o arquivo (sem carrega-lo) e retornar
# apenas o resultado.

total_linhas <- dbGetQuery(con, consult)
total_linhas

total
1 1426346
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Exemplo 2: Agregando por Municipio
Vamos contar o numero de 6bitos por codigo do municipio (CODMUNOCOR).

# Montar a consulta SQL
consult <- sprintf("SELECT CODMUNOCOR, COUNT(*) AS total_obitos
FROM '%s'
GROUP BY CODMUNOCOR
ORDER BY total_obitos DESC",
caminho)

# Envliar a consulta e pegar o resultado
obitos_por_municipio <- dbGetQuery(con, consult)

# Ver as primelras 4 linhas do resultado
head(obitos_por_municipio, n = 4L)

CODMUNOCOR total_obitos

1 355030 89208
2 330455 61443
3 310620 23340
4 261160 22146
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Exemplo 3: Adicionando filtragem

Vamos consultar o numero de dbitos por causas externas.

# Criar a consulta SQL
# CODMUNOCOR: Codigo do municipio onde ocorreu o Obito.
# CAUSABAS: 'vol' a 'V99' sao os codigos da CID-10 para
# aclidentes de transporte.
consult <- sprintf("SELECT CODMUNOCOR,
COUNT (CAUSABAS) AS obitos_acidentes
FROM '%s'

WHERE CAUSABAS BETWEEN 'VO1' AND 'V99'

GROUP BY CODMUNOCOR

ORDER BY obitos_acidentes DESC",

caminho)
obitos_acidentes_mun <- dbGetQuery(con, consult)
head(obitos_acidentes_mun, n = 4L) # primeiras 4 linhas

CODMUNOCOR obitos acidentes

1 130260 380
2 520870 367
3 261160 347
4 355030 281
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Exemplo 3: Adicionando filtragem

e Os codigos do SIM vém sem 0s nomes dos municipios.

e Precisamos cruzar com a tabela do IBGE para saber os nomes dos
municipios.

Llibrary(tidyverse)

tab_cod_ibge <- readxl::read_excel(
"/home/sadraque/Documentos/UFS/Disciplinas/2025.2/mineracao d¢
skip = 6, # Pula as 6 primeiras linhas
col_names = TRUE # Usa a 72 linha como nome das variaveils (d¢
) >
# Limpar nomes das colunas
janitor::clean_names()
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Exemplo 3: Adicionando filtragem

tab_cod_ibge <- tab_cod_ibge |[>
# Cria codigo de 6 digitos removendo o digito verificador
mutate(codigo_6digitos = str_sub(codigo_municipio_completo,
1, -2)) |>
# Converte para numérico
mutate(codigo_6digitos = as.numeric(codigo_6digitos)) |>
# Seleciona e renomela colunas finais
select(codigo = codigo_6digitos,
municiplio = nome_municipio,
UF = nome_uf)
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Exemplo 3: Adicionando filtragem

# juntando o numero de acidentes e os nomes dos municipios
obitos_acidentes_nome_municiplios <- tab_cod_ibge |>
left_join(obitos_acidentes_mun,
by = c("codigo" = "CODMUNOCOR")) |[>
arrange(desc(obitos_acidentes)) # ordem decrescente
head(obitos_acidentes_nome_municiplos)

# A tibble: 6 x 4

codigo municipio UF obitos_acidentes

<db 1> <chr> <chr> <db 1>
1 130260 Manaus Amazonas 380
2 520870 Goliania Goilas 367
3 261160 Recife Pernambuco 347
4 355030 Sado Paulo Sao Paulo 281
5 530010 Brasilia Distrito Federal 271
6 211130 Sao Luis Maranhéao 269

# Encerrando a conexao
dbDisconnect(con, shutdown = TRUE)
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Exercicios

1. Faca um histograma das idades das pessoas que vieram a 6bito em 2024
em todo o pais (note que primeiro vocé precisa fazer uma consulta na
base de dados).

2. Faca um grafico de barras contando os 6bitos por sexo para cada estado
do pais.
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Conclusao e Revisao

 Problema: ARAM é limitada; dados massivos nao cabem nela.
e Solucgao: Processamento Out-of-Core (On-Disk).
e Ferramentas:
= duckdb: Motor que faz o trabalho pesado no disco.
= DBI: Interface que o R usa para se comunicar.
= SQL: Alinguagem que usamos para descrever o que queremos.

e Fluxo: dbConnect ->duckdb_register ->dbGetQuery (com SQL) ->
dbDisconnect.

e Verbos SQL:

e SELECT (0o qué) e GROUP BY (agregar)
e FROM (de onde) e ORDER BY (ordenar)
e WHERE (filtro de linha)
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e Mais sobre a estrutura de SQL vocé pode encontrar em
https://www.w3schools.com/sql/.


https://www.w3schools.com/sql/
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