
Processamento Out-of-Core
com duckdb e DBI no R
ESTAT0109 – Mineração de Dados em Estatística

Prof. Dr. Sadraque E. F. Lucena
sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/mineracao

1

http://sadraquelucena.github.io/mineracao

Objetivo da Aula
Aprender a manipular grandes bases de dados no R.

Conhecer os pacotes duckdb e DBI.

Fazer consultas usando a linguagem SQL dentro do R.

2

O Muro da Memória RAM
O R é, por natureza, uma ferramenta in-memory. É comum usarmos o
comando: meus_dados <- read.csv("arquivo_grande.csv").

Problema: O que acontece se arquivo_grande.csv tem 50 GB e seu
notebook tem 16 GB de RAM?

O R tenta alocar 50 GB de espaço na RAM.

O sistema operacional tenta compensar usando swap (disco), o que
torna o processo astronomicamente lento.

Na maioria dos casos, a sessão do R simplesmente trava ou é morta
pelo sistema.

Solução: Em vez de trazer os dados para o R, nós lemos e processamos os
dados diretamente no disco, e trazemos para a RAM apenas o resultado
final (que geralmente é pequeno).

Isso é chamado de processamento Out-of-Core (ou On-Disk).

Podemos usar os pacotes duckdb e DBI para fazê-lo.

3

O Pacote duckdb
Funciona como seu assistente inteligente para dados grandes.

Imagine que seus dados são uma biblioteca gigante:

Método tradicional: Trazer todos os livros para sua mesa (RAM).

Com DuckDB: Pedir ao bibliotecário que consulte os livros nas estantes
(disco) e traga apenas a resposta.

4

O Pacote duckdb
É um sistema de gerenciamento de banco de dados (SGBD) analítico, in-
process e colunar. Ou seja:

Analítico (OLAP): Otimizado para consultas complexas, agregações e
filtros (ex: GROUP BY, SUM, AVG).

In-Process: Não é um servidor (como PostgreSQL ou MySQL). Ele roda
dentro da sua sessão R. Não há instalação, configuração ou
gerenciamento de servidor. Apenas install.packages("duckdb") e
pronto.

Colunar: Esta é a chave. Bancos de dados tradicionais armazenam
dados por linha. O duckdb armazena por coluna.

Se sua consulta é SELECT VARIAVEL1, COUNT(*) ..., ele lê apenas a
coluna VARIAVEL1 do disco, ignorando todas as outras (nome, data, etc.).
Isso resulta em uma velocidade maior.

duckdb implementa uma versão muito abrangente e moderna do padrão
SQL (Structured Query Language).

5

O Pacote DBI
DBI (Database Interface) é um pacote que fornece uma camada de
abstração universal para comunicação com bancos de dados no R.

Ele define um conjunto de funções consistentes:

dbConnect(): para iniciar a conexão.

dbGetQuery(): para enviar uma consulta e receber os dados de volta.

dbDisconnect(): para encerrar a conexão.

Por que usá-lo?

Consistência: Você usa as mesmas funções DBI para falar com duckdb,
RPostgres, RMariaDB, RSQLite, etc.

Portabilidade: Seu código R não muda. Se amanhã você decidir migrar
seu processo do duckdb (local) para um PostgreSQL (servidor), você
só precisa alterar a linha do dbConnect().

6

Como o SQL se encaixa?
O DBI permite que o R fale com o duckdb, e a língua que eles usam é o
SQL (Structured Query Language).

Em vez de usar comandos do pacte dplyr (como filter, group_by,
summarise) que operam em data.frames na memória, nós escrevemos
uma string de consulta SQL (ex: SELECT ... FROM ... WHERE ...)

Nós passamos essa string para o DBI (ex: dbGetQuery(…)).

O DBI entrega a string ao duckdb.

O duckdb interpreta o SQL, otimiza a consulta, executa a operação
diretamente no arquivo em disco, e retorna apenas o data.frame
resultante para o R.

7

Estrutura Geral de Uso
Este é o esquema de 5 passos para qualquer análise out-of-core com duckdb:

1. Carregar as bibliotecas na sessão
library(DBI)
library(duckdb)

2. Criar a conexão com o banco de dados (para salvar as consul

Opção A: Em memória (rápido, mas volátil)
#con <- dbConnect(duckdb::duckdb(), dbdir = ":memory:")

Opção B: Persistente (recomendado)
con <- dbConnect(duckdb::duckdb(),
 dbdir = "meu_banco_analitico.duckdb")

3. Informar ao duckdb onde estão os dados
Isso NÃO carrega o CSV. Apenas cria um "ponteiro" para ele.
duckdb_register(con, "meus_dados", "arquivo_grande.csv")

8

Estrutura Geral de Uso
Este é o esquema de 5 passos para qualquer análise out-of-core com duckdb:

Como as cosultas usam SQL, vamos fazer uma breve explicação sobre o
uso da linguagem.

4. Fazer consultas ao banco usando SQL
resultado <- dbGetQuery(con, "SELECT COUNT(*) FROM meus_dados")

5. Encerrar a conexão e liberar os recursos
dbDisconnect(con, shutdown = TRUE)

9

Estrutura Geral de uma Consulta SQL
Uma consulta SQL é como uma frase que descreve os dados que você deseja.
A ordem de escrita é quase sempre esta:

SELECT coluna1, FUNCAO(coluna2) AS novo_nome
FROM nome_da_tabela
WHERE condicao_de_filtro (ex: ano = 2023)
GROUP BY coluna_de_agrupamento (ex: coluna1)
ORDER BY coluna_de_ordenacao (ex: novo_nome) DESC
LIMIT 10

10

A instrução SELECT
Especifica as colunas que você quer ver no resultado final.

Sempre vem acompanhada de FROM, que especifica de qual tabela os
dados devem ser lidos.

Sintaxe:

coluna1, coluna2, ... são as colunas das tabelas que você quer
selecionar.

nome_tabela representa o nome da tabela que contém os dados.

Exemplo: Suponha que temos uma tabela clientes e queremos selecionar
todas as colunas.

SELECT coluna1, coluna2, ...
FROM nome_tabela

SELECT *
FROM clientes

11

A cláusula WHERE
Seleciona linhas que atendem a uma condição.

Sintaxe:

Exemplos:

SELECT coluna1, coluna2, ...
FROM nome_tabela
WHERE condição

SELECT *
FROM clientes
WHERE idade=30

SELECT *
FROM clientes
WHERE idade>24

12

A cláusula WHERE
WHERE aceita alguns operadores:

Operador Descrição Operador Descrição

= Igual <> ou != Diferente

> Maior que < Menor que

>= Maior ou igual <= Menor ou igual

BETWEEN Entre um intervalo LIKE Busca por um padrão

IN Para especificar
múltiplos valores
possíveis para uma
coluna

Exemplo:
SELECT *
FROM clientes
WHERE Idade BETWEEN 20 AND 30

13

A instrução GROUP BY
Agrupa linhas com mesmo valor.

Geralmente é usada com funções de agregação (COUNT(), MAX(), MIN(),
SUM(), AVG()) para agrupar os resultados de uma ou mais colunas.

Muito usada em conjunto com ORDER BY, para ordenação dos resultados.

Sintaxe:

Exemplo:

SELECT nomes_das_colunas
FROM nome_tabela
WHERE condição
GROUP BY nomes_das_colunas
ORDER BY nomes_das_colunas

SELECT COUNT(ID_cliente), estado
FROM clientes
GROUP BY estado
ORDER BY COUNT(ID_cliente) DESC

14

Exemplo
Vamos usar o banco de dados sobre mortes ocorridas no Brasil em 2024
disponíveis no Sistema de Informação sobre Mortalidade (SIM),
desenvolvido pelo Ministério da Saúde. Os dados estão disponíveis em:

.

Vamos usar o conjunto de dados DO24OPEN.csv (óbitos ocorridos em
2024) e as variáveis:

CODMUNOCOR: Código relativo ao município onde ocorreu o óbito

CAUSABAS: Causa básica da declaração de óbito

Também vamos usar uma tabela do IBGE com os códigos e nomes dos
municípios obtida em

.

Usaremos o arquivo
RELATORIO_DTB_BRASIL_2024_MUNICIPIOS.xls.

https://opendatasus.saude.gov.br/dataset/sim

https://www.ibge.gov.br/explica/codigos-dos-
municipios.php

15

https://opendatasus.saude.gov.br/dataset/sim
https://www.ibge.gov.br/explica/codigos-dos-municipios.php
https://www.ibge.gov.br/explica/codigos-dos-municipios.php

Exemplo: Preparação do ambiente
0. Instalando os pacotes (apenas uma vez)
install.packages(c("DBI", "duckdb"))

1. Carregando pacotes.
library(duckdb)
library(DBI)

2. Especificando onde serão armazenadas as consultas.
Isso prepara o "motor" do duckdb para receber comandos
con <- dbConnect(# 'con' vai armazenar o objeto da conexão
 duckdb::duckdb(), # Especifica DuckDB como SGBD
 dbdir = ":memory:" # as consultas serão salvas na memória
 # e depois apagadas ao finalizar
 #dbdir = "sim_obitos.duckdb" # cria uma arquivo p/ armazenar
 # os resultados da consulta
)

3. Definindo o caminho para o arquivo gigante
para não precisarmos escrever em toda consulta
caminho <- "/home/sadraque/Documentos/UFS/Disciplinas/2025.2/min

16

Exemplo 1: Contagem total de linhas
Vamos contar quantas linhas há na tabela de dados.

Criando a consulta SQL
SELECT COUNT(*): "Selecione a contagem de todas as linhas"
FROM '%s' será substituído pelo caminho do arquivo
consult <- sprintf("SELECT COUNT(*) AS total
 FROM '%s'", caminho)

Enviando a consulta e pegando o resultado.
O duckdb vai ler o arquivo (sem carregá-lo) e retornar
apenas o resultado.
total_linhas <- dbGetQuery(con, consult)
total_linhas

 total
1 1426346

17

Exemplo 2: Agregando por Município
Vamos contar o número de óbitos por código do município (CODMUNOCOR).

Montar a consulta SQL
consult <- sprintf("SELECT CODMUNOCOR, COUNT(*) AS total_obitos
 FROM '%s'
 GROUP BY CODMUNOCOR
 ORDER BY total_obitos DESC",
 caminho)

Enviar a consulta e pegar o resultado
obitos_por_municipio <- dbGetQuery(con, consult)

Ver as primeiras 4 linhas do resultado
head(obitos_por_municipio, n = 4L)

 CODMUNOCOR total_obitos
1 355030 89208
2 330455 61443
3 310620 23340
4 261160 22146

18

Exemplo 3: Adicionando filtragem
Vamos consultar o número de óbitos por causas externas.

Criar a consulta SQL
CODMUNOCOR: Codigo do município onde ocorreu o óbito.
CAUSABAS: 'V01' a 'V99' são os códigos da CID-10 para
acidentes de transporte.
consult <- sprintf("SELECT CODMUNOCOR,
 COUNT(CAUSABAS) AS obitos_acidentes
 FROM '%s'
 WHERE CAUSABAS BETWEEN 'V01' AND 'V99'
 GROUP BY CODMUNOCOR
 ORDER BY obitos_acidentes DESC",
 caminho)
obitos_acidentes_mun <- dbGetQuery(con, consult)
head(obitos_acidentes_mun, n = 4L) # primeiras 4 linhas

 CODMUNOCOR obitos_acidentes
1 130260 380
2 520870 367
3 261160 347
4 355030 281

19

Exemplo 3: Adicionando filtragem
Os códigos do SIM vêm sem os nomes dos municípios.

Precisamos cruzar com a tabela do IBGE para saber os nomes dos
municípios.

library(tidyverse)

tab_cod_ibge <- readxl::read_excel(
 "/home/sadraque/Documentos/UFS/Disciplinas/2025.2/mineracao de
 skip = 6, # Pula as 6 primeiras linhas
 col_names = TRUE # Usa a 7ª linha como nome das variáveis (de
) |>
 # Limpar nomes das colunas
 janitor::clean_names()

20

Exemplo 3: Adicionando filtragem
tab_cod_ibge <- tab_cod_ibge |>
 # Cria código de 6 dígitos removendo o dígito verificador
 mutate(codigo_6digitos = str_sub(codigo_municipio_completo,
 1, -2)) |>
 # Converte para numérico
 mutate(codigo_6digitos = as.numeric(codigo_6digitos)) |>
 # Seleciona e renomeia colunas finais
 select(codigo = codigo_6digitos,
 municipio = nome_municipio,
 UF = nome_uf)

21

Exemplo 3: Adicionando filtragem
juntando o número de acidentes e os nomes dos municípios
obitos_acidentes_nome_municipios <- tab_cod_ibge |>
 left_join(obitos_acidentes_mun,
 by = c("codigo" = "CODMUNOCOR")) |>
 arrange(desc(obitos_acidentes)) # ordem decrescente
head(obitos_acidentes_nome_municipios)

A tibble: 6 × 4
 codigo municipio UF obitos_acidentes
 <dbl> <chr> <chr> <dbl>
1 130260 Manaus Amazonas 380
2 520870 Goiânia Goiás 367
3 261160 Recife Pernambuco 347
4 355030 São Paulo São Paulo 281
5 530010 Brasília Distrito Federal 271
6 211130 São Luís Maranhão 269

Encerrando a conexão
dbDisconnect(con, shutdown = TRUE)

22

Exercícios
1. Faça um histograma das idades das pessoas que vieram a óbito em 2024

em todo o país (note que primeiro você precisa fazer uma consulta na
base de dados).

2. Faça um gráfico de barras contando os óbitos por sexo para cada estado
do país.

23

Conclusão e Revisão
Problema: A RAM é limitada; dados massivos não cabem nela.

Solução: Processamento Out-of-Core (On-Disk).

Ferramentas:

duckdb: Motor que faz o trabalho pesado no disco.

DBI: Interface que o R usa para se comunicar.

SQL: A linguagem que usamos para descrever o que queremos.

Fluxo: dbConnect -> duckdb_register -> dbGetQuery (com SQL) ->
dbDisconnect.

Verbos SQL:

SELECT (o quê)

FROM (de onde)

WHERE (filtro de linha)

GROUP BY (agregar)

ORDER BY (ordenar)

24

Mais sobre a estrutura de SQL você pode encontrar em
.https://www.w3schools.com/sql/

25

https://www.w3schools.com/sql/

Fim

26

