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Objetivo da Aula
Compreender as lógicas centrais dos algoritmos de clusterização particionada, suas
medidas de similaridade e robustez;

Decidir qual método usar diante de diferentes tipos de dados e problemas.
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O que é Agrupamento?
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Conceito Central
Agrupamento (Clustering) consiste em métodos usados para particionar dados não
rotulados em clusters (subgrupos) baseados em similaridade.

É uma técnica não supervisionada que busca identificar padrões emergentes nos
dados.
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Exemplos de Aplicação
Saúde:

Agrupar internações por idade, diagnóstico e tempo de permanência → revelar perfis
clínicos de pacientes e apoiar políticas hospitalares regionais.

Finanças:

Agrupar clientes por renda, histórico de crédito e uso de produtos → identificar perfis de
risco e consumo financeiro.

Municípios:

Agrupar cidades por indicadores socioeconômicos, educacionais e de infraestrutura →
mapear padrões territoriais de vulnerabilidade.

Cada cluster representa um padrão real que surge dos dados — e a escolha do método
define quão bem conseguimos enxergá-los.
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Tipos de Agrupamento
A clusterização pode ser classificada por sua estrutura e regras:
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Problema Central: O Protótipo
Nosso foco será em agrupamento particionado. A lógica central desses métodos é:

1. Escolher  “centros” (chamados de protótipos).

2. Atribuir cada ponto de dado ao protótipo mais próximo.

3. Atualizar a posição de cada protótipo com base nos pontos que lhe foram atribuídos.

4. Repetir os passos 2 e 3 até que os grupos não mudem mais (convergência).

Cada método de clusterização particionada é uma combinação diferente da resposta a
duas perguntas:

O que é o “protótipo”? → definição do centro (média, mediana, medoide, moda…)

Como medir “proximidade”? → escolha da métrica de distância (Euclidiana, Manhattan,
Gower…)

𝑘
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Mapa Mental: Que tipo de dado eu tenho?
A escolha do algoritmo e da medida de distância depende da natureza dos seus dados.

A pergunta-chave é:

Caso 1: Meus dados são TODOS NUMÉRICOS? (Ex: Idade, Renda, Temperatura)

Caso 2: Meus dados são TODOS CATEGÓRICOS? (Ex: Região, Sexo, Tipo Sanguíneo)

Caso 3: Meus dados são MISTOS? (Ex: Idade, Renda, Região, Sexo)

Vejamos como lidar com cada caso.
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Caso 1: Dados Numéricos
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Algoritmo Padrão: K-Means (K-Médias)
O K-means é o ponto de partida clássico para dados numéricos.

Aplicação: Dados numéricos.

Centro (Protótipo): A Média de todos os pontos do cluster.

Métrica (Distância): Distância Euclidiana.

Esta abordagem é classificada como:

Particionada (limites independentes)

Exclusiva (um item, um cluster)

Completa (todos os itens são atribuídos)

O usuário define o número de clusters ( ) que o conjunto de dados terá.𝑘
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K-Means: Métrica de Distância Utilizada (Euclidiana)
A distância Euclidiana (L2) é a métrica padrão do K-means.

Ela mede a “linha reta” entre dois pontos no espaço vetorial.

Sejam  e  duas observações, então

Atenção!

Padronize variáveis antes do cálculo: isto evita que uma variável (ex: Salário) domine o
resultado sobre outra (ex: Idade).

A elevação ao quadrado  torna esta medida muito sensível a outliers.

𝑎 = ( , … , )𝑎1 𝑎𝑝 𝑏 = ( , … , )𝑏1 𝑏𝑝

(𝑎, 𝑏) = .dist𝐸 ( − + ( − + ⋯ + ( −𝑎1 𝑏1)2 𝑎2 𝑏2)2 𝑎𝑝 𝑏𝑝)2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

( )𝑥2
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K-Means: Definição do Centro (Centróide)
O centróide de um cluster obtido via K-means é a média das coordenadas de todos os
pontos do cluster.

Ponto Crítico: Como se baseia em médias, o centróide é altamente sensível a valores
extremos (outliers), que podem deslocar o centro de massa do cluster.

centroide(𝑥, 𝑦, 𝑧) = ( , )
+ +𝑥1 𝑦1 𝑧1

3

+ +𝑥2 𝑦2 𝑧2

3
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K-Means: Funcionamento
Suponha .

1. O algoritmo escolhe  pontos aleatórios que servem como centros dos clusters iniciais.

2. O algoritmo calcula a distância (Euclidiana) de cada item aos centros e atribui o item
ao cluster cujo centro está mais próximo.

𝑘 = 3

𝑘
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K-Means: Funcionamento
3. Após atribuir cada item a um cluster, o algoritmo calcula o novo centróide (a média) de

cada cluster formado.

4. O algoritmo recalcula a distância de cada item a cada novo centróide e o reatribui ao
cluster mais próximo.
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K-Means: Funcionamento
5. O processo de atribuição e avaliação é repetido, com novos centróides calculados para

cada cluster e cada item é reatribuído ao cluster mais próximo.
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K-Means: Funcionamento
6. Em algum momento, os centróides não mudarão mais de lugar e não resultarão em

novas atribuições.

Nesse ponto dizemos que o algoritmo convergiu e o processo é interrompido.
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Ponto Fraco do K-Means: Outliers
O K-Means minimiza a soma dos quadrados das distâncias (associado à Distância
Euclidiana L2).

O centróide (baseado na média) é o ponto de equilíbrio.

Um único outlier age como um “peso” muito grande, “puxando” o centróide em sua
direção, pois sua grande distância é elevada ao quadrado.

Precisamos então de alternativas robustas quando há outliers nos dados.
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Solução Robusta 1: K-Medians (K-medianas)
Aplicação: Dados numéricos com outliers.

Centro (Protótipo): A Mediana de cada variável. O centro é calculado.

Métrica (Distância): Distância de Manhattan (L1).

Vantagem: A Mediana é muito mais robusta a outliers do que a Média.
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K-Medians: A Métrica Métrica de Distância Utilizada
(Manhattan)

A distância de Manhattan (L1) mede a distância como sendo a soma das diferenças
absolutas (“caminho dos quarteirões”).

Sejam  e  duas observações, então

Por que é robusta?

Não eleva as diferenças ao quadrado.

Diferenças grandes (causadas por outliers) têm um peso linear, e não quadrático.

O K-Medians, ao usar L1, é naturalmente menos afetado por pontos extremos.

𝑎 = ( , … , )𝑎1 𝑎𝑝 𝑏 = ( , … , )𝑏1 𝑏𝑝

(𝑎, 𝑏) = | − | + | − | + ⋯ + | − |.dist𝑀 𝑎1 𝑏1 𝑎2 𝑏2 𝑎𝑝 𝑏𝑝
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Solução Robusta 2: K-Medoids (PAM)
Aplicação: Dados numéricos com outliers.

Centro (Protótipo): Um Ponto Real (o medoide). O centro é eleito.

Métrica (Distância): Qualquer uma!

Como o centro é eleito? O medoide é o ponto real cuja distância total aos demais
pontos do seu cluster é a mínima.

medoide = arg 𝑑( , )min
∈𝐶𝑥𝑖

∑
∈𝐶𝑥𝑗

𝑥𝑖 𝑥𝑗

O método também é chamado de PAM (Partitioning Around Medoids –
Particionamento em Torno de Medoides)
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K-Medoids vs. K-Medians: A Vantagem
(Interpretabilidade)

K-Medians (Centro Calculado) K-Medoids (Centro Real)

O centro é a mediana de cada variável. O centro é um ponto real dos dados.

O protótipo (med_x, med_y) pode não
existir na sua base de dados.

O protótipo é, por exemplo, o Cliente B (ID
456).

Interpretação (Fraca): “O Cluster 1
representa clientes com idade mediana de
25 e salário mediano de R$ 1200.”

Interpretação (Forte): “O Cluster 1 é
representado pelo Cliente B, que tem 25
anos e salário de R$ 1200.”
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K-Medoids vs. K-Medians: A Vantagem (Flexibilidade)
K-Medians está intrinsecamente ligado à otimização da Distância Manhattan (L1).

K-Medoids pode usar QUALQUER medida de distância:

Distância Euclidiana (L2)

Distância Manhattan (L1)

Distância de Gower (para dados mistos - vamos ver adiante!)

Isso torna o K-Medoids a ferramenta mais poderosa e flexível para dados complexos.
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Resumo: Clusterização de Dados Numéricos

Comparação    K-means            K-medians          K-medoids           

Centro        Média              Mediana            Ponto real (medoide)

Distância      Euclidiana (L2)    Manhattan (L1)    Qualquer (Gower!) 

Robustez* a
outlier

Baixa              Média              Alta                 

Ponto real?    Não (calculado)    Não (calculado)    Sim (eleito)     

Quando usar    Dados numéricos
limpos

Dados numéricos
com outliers

Dados com outliers ou
mistos
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Caso 2: Dados Categóricos
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O Problema com Dados Categóricos
Problema: Agrupar dados como (Sexo, Região, Plano de Saúde).

Métricas como a Distância Euclidiana ou de Manhattan não funcionam. Não podemos
calcular algo como:

Precisamos de uma métrica e um centro que funcionem para categorias.

('Nordeste' − 'Sul' + ('Público' − 'Privado')2 )2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
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A Métrica: Distância de Hamming (ou Dissimilaridade
Simples)

A Distância de Hamming é usada quando todas as variáveis são categóricas
(nominais).

Ela mede quantas categorias diferem entre duas observações.

Sejam  e  duas observações, então

em que  se as categorias forem diferentes, e 0 se forem iguais.

𝑎 = ( , , … , )𝑎1 𝑎2 𝑎𝑝 𝑏 = ( , , … , )𝑏1 𝑏2 𝑏𝑝

(𝑎, 𝑏) = 𝐼( ≠ ) + 𝐼( ≠ ) + ⋯ + 𝐼( ≠ )dist𝐻 𝑎1 𝑏1 𝑎2 𝑏2 𝑎𝑝 𝑏𝑝

𝐼( ≠ ) = 1𝑎𝑖 𝑎𝑖
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Distância de Hamming: Exemplo

Atributo      Paciente A Paciente B Diferença

Sexo          M          F          1         

Região        Nordeste    Nordeste    0         

Tipo de Plano Público    Privado    1         

Total                              2     

Distância Hamming = 2 (duas categorias diferentes).
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Algoritmo para Dados Categóricos: K-Modes
O K-modes é uma extensão do K-means para dados puramente categóricos.

Aplicação: Dados Categóricos (nominais).

Centro (Protótipo): A Moda de cada variável (o modo).

Métrica (Distância): Distância de Hamming.
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K-Modes: O Centro (Modo)
No K-modes, o protótipo (centro) do cluster não é uma média, mas sim o vetor das
categorias mais frequentes (a moda) encontradas no cluster.

Exemplo de Cálculo do Modo (Protótipo) para um Cluster:

Variável Membros do Cluster Moda (Centro)

Região Nordeste, Nordeste, Sul,
Nordeste, Sudeste

Nordeste (3/5)

Plano Público, Privado, Público,
Público, Privado

Público (3/5)

Sexo M, F, F, M, F F (3/5)
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K-Modes: Vantagens e Limitações
Uso:

Bases com apenas variáveis nominais (ex.: diagnóstico primário, modalidade de
serviço, ocupação).

Vantagens:

Rápido e simples.

Interpretação direta (o “perfil modal” de cada cluster é muito claro).

Limitações:

Não trata variáveis numéricas (ex: Idade).

Não trata variáveis ordinais de forma natural (ex: Escolaridade).
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Caso 3: Dados Mistos
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O Problema com Dados Mistos
Problema: Agrupar itens usando variáveis numéricas e categóricas como Idade, Renda,
Gênero, Região.

Nesses casos K-Means e K-Modes falham. Precisamos de soluções híbridas.

Temos duas estratégias principais:

1. Robusta (Gower + K-Medoids): Usa um algoritmo robusto com uma métrica de
distância flexível.

2. Rápida (K-Prototypes): Usa um algoritmo híbrido que combina K-Means e K-Modes.
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Solução 1 (Robusta): Gower + K-Medoids
Usamos como métrica a Distância de Gower
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Solução 1 (Robusta): Gower + K-Medoids
Aplicação: Dados Mistos.

Centro (Protótipo): Ponto Real (medoide).

Métrica (Distância): Distância de Gower.

Como K-Medoids funciona com qualquer matriz de distância, fazemos o seguinte:

1. Calculamos a matriz de dissimilaridade  entre todos os pontos usando
Gower.

2. Fornecemos essa matriz ao algoritmo K-Medoids (PAM).

3. O K-Medoids elegerá os pontos reais mais centrais com base nessa distância mista.

𝑁 × 𝑁
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Gower + K-Medoids: Vantagens e Limitações
Vantagens:

A solução mais robusta e flexível.

Trata todos os tipos de variáveis (numéricos, categóricos, ordinais) corretamente.

Robusto a outliers (medoide é ponto real).

Interpretação ótima (medoide = observação representativa).

Limitações:

Custo Computacional: A matriz de Gower  pode ser custosa (memória e tempo)
para datasets com N grande (ex: N > 10.000).

Complexidade elevada (O( )): o tempo de execução ou o uso de memória cresce
quadraticamente conforme o número de observações aumenta.

𝑁 × 𝑁

𝑁 2
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Solução 2 (Rápida): K-Prototypes
O K-prototypes une K-means (para variáveis numéricas) e K-modes (para variáveis
categóricas).

Aplicação : Dados Mistos.

Centro (Protótipo): Híbrido!

Média para variáveis numéricas.

Moda para variáveis categóricas.

Métrica (Distância): Híbrida (Euclidiana + Hamming).
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K-Prototypes: A Métrica Híbrida
A distância é uma soma ponderada das distâncias numéricas e categóricas.

: Parte Numérica (Dist. Euclidiana ao Quadrado)

: Parte Categórica (Dist. Hamming)

: Um peso (parâmetro) que define a importância da parte categórica.

Vantagens:

Escala bem: Não precisa de matriz N×N. Excelente para grandes bases mistas.

Interpretação direta (protótipo = perfil de médias + modas).

Limitações:

dist(𝑎, 𝑏) = ∑( − + 𝛾 ∑ 𝐼( ≠ )𝑎𝑖 𝑏𝑖)
2 𝑎𝑗 𝑏𝑗

∑( −𝑎𝑖 𝑏𝑖)
2

∑ 𝐼( ≠ )𝑎𝑗 𝑏𝑗

𝛾
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A parte numérica (K-Means) ainda é sensível a outliers.

Variáveis ordinais são tratadas como categóricas (perda de ordem).

O parâmetro  exige ajuste/escolha.𝛾



Módulo 5: Escolhendo o número
de 𝑘
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Como definir o número de clusters (escolher )?
Suponha que escolhemos o método (ex: K-Means). Mas quantos clusters ( ) devemos
criar?

? ? ?

Esta é a pergunta mais comum em agrupamento.

Não há uma resposta única “correta”, mas sim métodos que ajudam a encontrar um 
“ótimo”.

Veremos três dos mais usados:

Método do Cotovelo (Elbow Method)

Método da Silhueta Média (Average Silhouette)

Estatística Gap (Gap Statistic)

𝑘

𝑘

𝑘 = 2 𝑘 = 3 𝑘 = 10

𝑘
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Método 1: Cotovelo (Elbow Method)
A ideia é testar vários valores de  e calcular a Soma dos Quadrados Intra-clusters
(Within-Cluster Sum of Squares, ).

 mede a compactação (homogeneidade) total dos clusters.

Quanto mais , menor o  (naturalmente,  se ).

Procuramos o  onde a redução do  começa a diminuir drasticamente: o
“cotovelo” da curva.

É o ponto de equilíbrio: aumentar  não traz melhora significativa.

𝑘

𝑊 𝐶𝑆𝑆

𝑊 𝐶𝑆𝑆

𝑊 𝐶𝑆 = dist( , + dist( , + ⋯𝑆𝑘 ∑
cluster 1

𝑃𝑖 𝐶1)2

∑
cluster 2

𝑃𝑖 𝐶2)2

𝑘 𝑊 𝐶𝑆𝑆 𝑊 𝐶𝑆𝑆 = 0 𝑘 = 𝑁

𝑘 𝑊 𝐶𝑆𝑆

𝑘
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Método 1: Cotovelo (Elbow Method)
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Método 2: Silhueta Média (Average Silhouette)
Mede o grau de coesão e separação dos clusters. Avalia o quão bem cada item está
posicionado.

Para cada observação , calcula-se 

: distância média de  aos pontos do mesmo cluster (coesão).

: distância média de  aos pontos do cluster vizinho mais próximo (separação).

 varia de -1 a 1:

: Item bem ajustado (ideal).

: Item na fronteira entre clusters.

: Item provavelmente no cluster errado.

O  ótimo é aquele que maximiza a Silhueta Média de todas as observações.

𝑖 𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}

𝑎(𝑖) 𝑖

𝑏(𝑖) 𝑖

𝑆(𝑖)

≈ 1

≈ 0

< 0

𝑘
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Método 2: Silhueta Média (Average Silhouette)
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Método 3: Estatística Gap
Compara a dispersão observada ( ) com a dispersão esperada sob uma
distribuição de referência aleatória (sem clusters).

A ideia é:  é bom se a compactação dos nossos clusters for muito melhor do que uma
compactação aleatória.

1. Para cada , calcule  dos dados originais.

2. Gere  amostras aleatórias (uniformes) e calcule a média de .

3. A Estatística Gap é a diferença:

Procuramos o  que maximiza o .

𝑊 𝐶𝑆𝑆𝑘

𝑘

𝑘 log(𝑊 𝐶𝑆 )𝑆𝑘

𝐵 log(𝑊 𝐶𝑆 )𝑆∗𝑏
𝑘

𝐺𝑎𝑝(𝑘) = 𝐸[log(𝑊 𝐶𝑆 )] − log(𝑊 𝐶𝑆 )𝑆∗𝑏
𝑘

𝑆𝑘

𝑘 𝐺𝑎𝑝(𝑘)
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Método 3: Estatística Gap
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Para definir o algoritmo de agrupamento

E para encontrar , use métodos de validação como Cotovelo (WCSS), Silhueta ou
Estatística Gap.

𝑘
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Agora vamos fazer no R…
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