
Melhorando a Performance dos
Modelos
ESTAT0109 – Mineração de Dados em Estatística

Prof. Dr. Sadraque E. F. Lucena
sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/mineracao

1

http://sadraquelucena.github.io/mineracao

Objetivo da Aula
Apresentar métodos de aprendizagem em conjunto (bagging e boosting) e ensinar
como ajustar seus hiperparâmetros para melhorar o desempenho preditivo dos
modelos.

2

Aprendizagem em Conjunto (Ensemble Learning)
Métodos de aprendizado em conjunto são técnicas utilizadas para combinar múltiplos
algoritmos de aprendizado a fim de obter um desempenho preditivo melhor do que
poderia ser obtido por qualquer um dos algoritmos de aprendizado individualmente.

Veremos dois tipos:

Bagging

Boosting

3

Bagging

4

Aprendizagem em Conjunto (Ensemble Learning)
Bagging

Bagging vem de Bootstrap Aggregating (agregação bootstrap).

A ideia é treinar vários modelos com diferentes subconjuntos dos dados de
treinamento selecionados aleatoriamente e combinar suas predições para fazer a
predição final.

Esta estratégia reduz a variâcia da predição, pois cada modelo é treinado com um
conjunto levemente diferente de dados.

Ela é particularmente útil quando os modelos tendem a sobreajustar aos dados.

Dois algoritmos de Bagging são comumente usados:

Vanilla Bagging

Random Forest (Floresta Aleatória)

5

Aprendizagem em Conjunto (Ensemble Learning)
Vanilla Bagging
1. Obtemos amostras bootstrap: selecionamos de forma aleatória e com reposição

instâncias do conjunto de dados, gerando subconjuntos de mesmo tamanho do
original.

2. Usamos algum método (árvores de decisão, redes neurais, SVMs…) para predizer as
respostas em cada amostra bootstrap.

3. Combinamos as saídas para uma resposta final.

Em problemas de regressão a saída é a média das predições de cada modelo.

Em problemas de classificação a saída é o voto da maioria dos modelos.

O número de subconjuntos (amostras) é um hiperparâmetro que pode ser ajustado.

Exemplo: algoritmo Bagged CART. 𝑁

6

Aprendizagem em Conjunto (Ensemble Learning)
Vanilla Bagging

7

Aprendizagem em Conjunto (Ensemble Learning)
Random Forest

É uma extensão do algoritmo vanilla bagging. O procedimento é:

1. Obtenha amostras bootstrap, selecionando aleatoriamente instâncias do conjunto
de dados original, e também escolhendo alguns atributos de forma aleatória.

2. Em cada amostra ajuste uma árvore de decisão para fazer previsões.

3. Combine as previsões de todas as árvores para obter uma resposta final.

A principal diferença do random forest para o vanilla bagging é que, além das
instâncias, os atributos de cada subconjunto também são selecionados
aleatoriamente.

O número de atributos a serem considerados em cada subconjunto é um
hiperparâmetro.

𝑁

8

Aprendizagem em Conjunto (Ensemble Learning)
Random Forest

9

Aprendizagem em Conjunto (Ensemble Learning)
Random Forest

Vantagens

Reduz risco de overfitting, pois ajusta modelos com observações e atributos
levemente diferentes.

Maior acurácia.

Robustez a ruídos e valores ausentes.

Desvantagens

Demanda tempo e poder computacional, pois ajusta várias árvores.

Interpretabilidade mais difícil que em uma árvore de decisão.

10

Boosting

11

Boosting
O método Boosting combina vários aprendizes fracos para formar um aprendiz forte.

Procedimento:

1. Inicialmente um modelo é treinado e avaliado o erro de predição em cada instância.

2. Um segundo modelo é ajustado, dando mais atenção às observações com previsões
incorretas. Isso é feito sucessivamente (vezes) para reduzir o erro de predição.

3. A saída é a combinação dos resultados dos modelos.

Três algoritmos populares de boosting são AdaBoost, Gradient Boosting e XGBoost.

O algoritmo C5.0 também permite fazer boosting.

O número de árvores de decisões usadas é um hiperparâmetro que pode ser ajustado.

𝑁

𝑁

12

Boosting
Vejamos melhor a ideia do algoritmo usando Gradient Boosting para regressão:

1. Treine Árvore-1 aos dados e estime .

2. Calcule os resíduos a partir da Árvore-1. Treine Árvore-2 usando como variável
resposta os resíduos .

3. Repita o processo usando os resíduos da árvore ajustada anteriormente como
variável resposta até que árvores sejam treinadas.

4. Combina as predições para obter a predição final.

A predição de será a combinação das predições de cada árvore:

𝑦 𝑖

𝑟1𝑖

𝑟1𝑖

𝑁

𝑦𝑖

= + 𝜂 + 𝜂 + 𝜂𝑦𝑝𝑟𝑒𝑑 𝑦 𝑖 𝑟̂ 1𝑖 𝑟̂ 2𝑖 𝑟̂ 𝑁𝑖

13

Boosting
Exemplo
Suponha que queremos estimar o preço de uma casa baseado na idade, metragem
quadrada e localização.

Passo 1: uma árvore de decisão é treinada e preditos os valores das casas.

14

Boosting
Exemplo

Passo 2: Treinamos uma segunda árvore de decisão considerando como reposta os
resíduos da árvore anterior, .

O resíduo é calculado:
𝑟1𝑖

𝑟1𝑖 = −𝑟1𝑖 𝑦𝑖 𝑦 𝑖

15

Boosting
Exemplo

Passo 3: Os resíduos dessa nova árvore são obtidos e usados como resposta no treino
da árvore seguinte.

16

Boosting
Exemplo

Passo 4: O processo continua até que árvores sejam treinadas.

A predição final é a soma das predições de todas as árvores ponderadas pela taxa de
aprendizado.

𝑁

17

Ajuste de Parâmetros

18

Ajuste de Parâmetros
Os parâmetros que controlam o comportamento e o desempenho dos algoritmos de
aprendizagem de máquina são comumente chamados de hiperparâmetros.

Durante o processo de treinamento de um modelo de aprendizagem de máquina, é
essencial ajustar esses hiperparâmetros para melhorar o desempenho preditivo do
modelo.

De acordo com o método utilizado, diferentes hiperparâmetros podem ser ajustados.

19

Ajuste de Parâmetros
Exemplos:

Método Tipo de
aprendizado

Função no R Parâmetros

k-NN Ambos knn k

Naive Bayes Classificação nb fL, usekernel

Árvore C5.0 Classificação C5.0 model, trials, winnow

Árvore CART Ambos rpart cp

Árvore XGBoost Ambos xgbTree nrounds, max_depth,
eta, gamma,
colsample_bytree,
min_child_weight,
subsample

20

Ajuste de Parâmetros
k-Nearest Neighbors:

k: número de vizinhos mais próximos.

Naive Bayes:

fL: incorpora o suavizador de Laplace, usado para lidar com a probabilidade zero de
certos eventos ocorrerem em dados de treinamento;

usekernel: especifica se o método deve usar uma estimativa de densidade de kernel
(TRUE) para variáveis contínuas em vez de uma estimativa gaussiana padrão (FALSE).

21

Ajuste de Parâmetros
Árvore C5.0:

model: se será uma árvore (tree) ou conjunto de regras (rules).

trials: número de iterações boost.

winnow: usa todos os atributos (FALSE) ou apenas os mais importantes (TRUE).

Árvore CART:

cp: parâmetro de complexidade. Valor de 0 a 1 usado para podar a árvore (quanto
menor o valor de cp, maior a árvore).

Random Forest:

mtry: número de atributos que serão selecionados aleatoriamente em cada árvore.

22

Ajuste de Parâmetros
Árvore XGBoost:

nrounds: número de iterações de boosting.

max_depth: profundidade máxima permitida para cada árvore.

eta: taxa de aprendizado que controla a contribuição de cada árvore ao modelo
final.

gamma: controla a complexidade das árvores através da penalização do crescimento
do nó. Valores mais altos levam a uma poda mais agressiva.

colsample_bytree: Fração de colunas a serem amostradas aleatoriamente em cada
iteração de construção da árvore.

min_child_weight: peso mínimo necessário para criar um novo nó na árvore.

subsample: fração de observações (ou linhas) a serem amostradas aleatoriamente
em cada iteração de construção da árvore.

23

Ajuste de Parâmetros
Caso você esqueça os parâmetros de um modelo no R, use a função modelLookup() do
pacote caret.

Para saber os modelos e parâmetros disponíveis no pacote caret, acesse:

library(caret)
modelLookup("C5.0")

 model parameter label forReg forClass probModel
1 C5.0 trials # Boosting Iterations FALSE TRUE TRUE
2 C5.0 model Model Type FALSE TRUE TRUE
3 C5.0 winnow Winnow FALSE TRUE TRUE

modelLookup("rpart")

 model parameter label forReg forClass probModel
1 rpart cp Complexity Parameter TRUE TRUE TRUE

https://topepo.github.io/caret/available-models.html

24

https://topepo.github.io/caret/available-models.html

Ajuste de Parâmetros
O processo de definir os valores mais adequados para os hiperparâmetros é chamado
de ajuste de parâmetros (ou tuning de parâmetros).

O ajuste costuma ser feito via busca em grade (grid search) e consiste em três etapas:

1. Criar uma grade de hiperparâmetros possíveis a serem avaliados;

2. Construir um modelo baseado em cada combinação de hiperparâmetros;

3. Escolher aquele com melhor performance segundo alguma métrica.

O ajuste de parâmetros pode ser realizado de forma automática ou customizada
(quando o espaço de busca é escolhido pelo usuário).

25

Ajuste de Parâmetros
26

Ajuste de Parâmetros
A função train() do pacote caret possui os seguintes argumentos:

form: especifica a variável de saída e as variáveis de entrada. Ex.: y ~ x1 + x2 +
...

data: especifica os dados de treino.

metric: especifica a métrica usada para avaliar o desempenho do modelo durante o
treinamento. Usamos “RMSE” e “Rsquared” para regressão e “Accuracy” e “Kappa”
para classificação.

method: especifica o método de aprendizado de máquina.

trControl: para ajuste customizado. Permite controlar o processo de treinamento,
incluindo opções como validação cruzada, repetição do treinamento e seleção de
modelo.

tuneGrid: valores dos hiperparâmetros do método a serem testados.

27

Ajuste de Parâmetros
Exemplo:

Ajuste automático:

modelo <- train(
 y ~ .,
 data = dados_treino,
 metric = "Accuracy",
 method = "rf",
 trControl = trainControl(method = "cv", number = 10)
)

28

Ajuste de Parâmetros
Exemplo:

Ajuste customizado:

modelo <- train(
 y ~ .,
 data = dados_treino,
 metric = "Accuracy",
 method = "rf",
 tuneGrid = expand.grid(mtry = 1:10), # testar mtry de 1 a 10
 trControl = trainControl(method = "cv", number = 10)
)

29

Agora vamos fazer no R…

30

