Melhorando a Performance dos
Modelos

ESTAT0109 - Mineracao de Dados em Estatistica

Prof. Dr. Sadraque E. F. Lucena
sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/mineracao

http://sadraquelucena.github.io/mineracao

Objetivo da Aula

e Apresentar métodos de aprendizagem em conjunto (bagging e boosting) e ensinar
como ajustar seus hiperparametros para melhorar o desempenho preditivo dos
modelos.

EEEEEEEEE

Aprendizagem em Conjunto (Ensemble Learning)

e Métodos de aprendizado em conjunto sao técnicas utilizadas para combinar multiplos
algoritmos de aprendizado a fim de obter um desempenho preditivo melhor do que
poderia ser obtido por qualquer um dos algoritmos de aprendizado individualmente.

e Veremos dois tipos:

= Bagging
m Boosting

EEEEEEEEE

Bagging

(R

h.ad UNIVERSIDADE
\'\‘*‘ FEDERAL DE
1 v SERGIPE

Aprendizagem em Conjunto (Ensemble Learning)
Bagging

e Bagging vem de Bootstrap Aggregating (agregacao bootstrap).

e Aideia é treinar varios modelos com diferentes subconjuntos dos dados de

treinamento selecionados aleatoriamente e combinar suas predicdes para fazer a
predicao final.

= Esta estratégia reduz a variacia da predicao, pois cada modelo é treinado com um
conjunto levemente diferente de dados.

= Ela é particularmente util quando os modelos tendem a sobreajustar aos dados.
e Dois algoritmos de Bagging sao comumente usados:
= Vanilla Bagging

m Random Forest (Floresta Aleatoria)

EEEEEEEEE

Aprendizagem em Conjunto (Ensemble Learning)
Vanilla Bagging

1. Obtemos amostras bootstrap: selecionamos de forma aleatdria e com reposicao
instancias do conjunto de dados, gerando subconjuntos de mesmo tamanho do
original.

2. Usamos algum método (arvores de decisao, redes neurais, SVMs...) para predizer as
respostas em cada amostra bootstrap.

3. Combinamos as saidas para uma resposta final.

e Em problemas de regressao a saida é a média das predi¢coes de cada modelo.
e Em problemas de classificacao a saida é o voto da maioria dos modelos.

e O numero de subconjuntos (amostras) € um hiperparametro que pode ser ajustado.
N

e Exemplo: algoritmo Bagged CART.

EEEEEEEEE

Aprendizagem em Conjunto (Ensemble Learning)
Vanilla Bagging

Predicao 1
f(x)

Predicao 2
f2(x)

Predicao 3

(x)

|

Dados iniciais

Dados
bootstrap

Arvores de
Decisao

Predicao n
f(x)

Predicoes

|

Predicao Final
(Média ou Moda)

f(x)

EEEEEEEEE

Aprendizagem em Conjunto (Ensemble Learning)

Random Forest

e E uma extenséo do algoritmo vanilla bagging. O procedimento é:

1. Obtenha amostras bootstrap, selecionando aleatoriamente instancias do conjunto
de dadosBfiginal, e também escolhendo alguns atributos de forma aleatoria.

2. Em cada amostra ajuste uma arvore de decisao para fazer previsoes.

3. Combine as previsoes de todas as arvores para obter uma res

nosta final.

e Aprincipal diferenca do random forest para o vanilla bagging é que, além das

instancias, os atributos de cada subconjunto também sao seleci

aleatoriamente.

e O numero de atributos a serem considerados em cada subconju
hiperparametro.

onados

nto é um

IIIIIIIIIIII
EEEEEEEEE

Aprendizagem em Conjunto (Ensemble Learning)
Random Forest

' Espacode
‘ Atributos 1

l

Espaco de

Atributos 2

l

Espaco de | ‘

Atributos 3

/\
/ I'I. 1\\

AR

Predicao 1

Predicao 2

Predicao 3

Dados iniciais

. -- _ Dados

| | /

N bootstrap
Espaco de | Espaco de
Atributos N | Atributos

Y
Arvores de
Decisao
Predicao n Predicdes

Predicao Final
(Média ou Moda)

h.ad UNIVERSIDADE
\'\‘*‘ FEDERAL DE
% 7 SERGIPE

10

Aprendizagem em Conjunto (Ensemble Learning)
Random Forest

e Vantagens

= Reduzrisco de overfitting, pois ajusta modelos com observacoes e atributos
levemente diferentes.

= Maior acuracia.
= Robustez a ruidos e valores ausentes.
e Desvantagens
= Demanda tempo e poder computacional, pois ajusta varias arvores.

= [nterpretabilidade mais dificil que em uma arvore de decisao.

EEEEEEEEE

11

Boosting

(R

h.ad UNIVERSIDADE
\'\‘*‘ FEDERAL DE
1 v SERGIPE

12

Boosting

e O método Boosting combina varios aprendizes fracos para formar um aprendiz forte.
e Procedimento:
1. Inicialmente um modelo é treinado e avaliado o erro de predicao em cada instancia.

2. Um segundo modelo é ajustado, dando mais atencao as observacoes com previsoes
incorretas. Isso é feito sucessivamente (vezes) para reduzir o erro de predicao.

3. A saida é a combinacao dos resultados é\és modelos.
e Trés algoritmos populares de boosting sao AdaBoost, Gradient Boosting e XGBoost.
e Oalgoritmo C5.0 também permite fazer boosting.

e O numero de arvores de decisoes usadas é um hiperparametro que pode ser ajustado.
N

EEEEEEEEE

13

Boosting

e Vejamos melhor a ideia do algoritmo usando Gradient Boosting pararegressao:

1. Treine Arvore-1 aos dados e estime..

2. Calcule os residuos a partir da Arvo%/é'—l. Treine Arvore-2 usando como variavel
resposta os residuog1i

. Iy , , . .
3. Repita o processo usando os residuos da arvore ajustada anteriormente como
variavel resposta até que arvores sejam treinadas.

4. Combina as predicoes par]avobter a predicao final.

e Apredicao de sera a combinacao das predicoes de cada arvore:
Vi

Ypred = 5/\1‘ +77?1i +7]?2i +7]?Ni

EEEEEEEEE

Boosting
Exemplo

Suponha que queremos estimar o preco de uma casa baseado na idade, metragem
guadrada e localizacao.

Age OSquare Footage Location Price

5 1500 5| 480
11 2030 12 | 1090
14 1442 6 | 350

8 2501 4 | 1310
12 1300 9 1 400

e Passo 1: uma arvore de decisao é treinada e preditos os valores das casas.

Boosting
Exemplo

e Passo 2: Treinamos uma segunda arvore de decisao considerando como reposta 0s
residuos da arvore anterior, .

e Oresiduo é calculado: M
F1i ri =Yyi — Y

Predicted 7; Residuals r4

5 1500 5 48(440 40

11 2030 12 | 109C 830 210

14 1442 6 35(C 400 -50

8 2501 4 | 131C 1010 300

12 1300 9 40C 600 -200

16

Boosting
Exemplo

e Passo 3: Os residuos dessa nova arvore sao obtidos e usados como resposta no treino
da arvore seguinte.

Square Footage Location Price Predictedy; Residualsr; Predicted iy Residuals r;

5 1500 5 480 440 40 20 20
11 2030 12 | 1090 880 210 200 10
14 1442 6 350 400 -50 0 -50
8 2501 4 | 1310 1010 300 240 60
12 1300 9 400 600 -200 -50 -150

EEEEEEEEE

17

Boosting
Exemplo

e Passo 4: O processo continua até que arvores sejam treinadas.

e Apredicao final € asoma das predigc”)e]s\]de todas as arvores ponderadas pela taxa de
aprendizado.

>quare Location Price Predictedy; Residualsr; Residualsr, ... Price Prediction

>~ Footage - Ypred
5 1500 5| 480 440 40 20 478
11 2030 12 | 1090 880 210 10 1091
14 1442 6 | 350 400 -50 -50 335
8 2501 4 | 1310 1010 300 60 1311
12 1300 9| 400 600 -200 -150 400

uuuuuuu

EEEEEEEEE

Ajuste de Parametros

19

Ajuste de Parametros

e Os parametros que controlam o comportamento e o desempenho dos algoritmos de
aprendizagem de maquina sao comumente chamados de hiperparametros.

e Durante o processo de treinamento de um modelo de aprendizagem de maquina, é

essencial ajustar esses hiperparametros para melhorar o desempenho preditivo do
modelo.

e De acordo com o método utilizado, diferentes hiperparametros podem ser ajustados.

EEEEEEEEE

Ajuste de Parametros

20

e Exemplos:

Método Tipo de Funcagono R Parametros

aprendizado

K-NN Ambos knn k

Naive Bayes Classificacao nb fL, usekernel

Arvore C5.0 Classificacdo C5.0 model, trials, winnow
Arvore CART Ambos rpart cp

Arvore XGBoost Ambos xgbTree nrounds, max_depth,

eta, gamma,

colsample_bytree,
min_child_weight,
subsample

21

Ajuste de Parametros

e k-Nearest Neighbors:
= k: numero de vizinhos mais proximos.
e Naive Bayes:

m fL:incorpora o suavizador de Laplace, usado para lidar com a probabilidade zero de
certos eventos ocorrerem em dados de treinamento;

= usekernel: especifica se 0 método deve usar uma estimativa de densidade de kernel
(TRUE) para variaveis continuas em vez de uma estimativa gaussiana padrao (FALSE).

EEEEEEEEE

22

Ajuste de Parametros

e Arvore C5.0:

= model: se sera uma arvore (tree) ou conjunto de regras (ru'les).

m trials: numero de iteracoes boost.

® winnow: usa todos os atributos (FALSE) ou apenas os mais importantes (TRUE).
e Arvore CART:

= cp: parametro de complexidade. Valor de 0 a 1 usado para podar a arvore (quanto
menor o valor de cp, maior a arvore).

e Random Forest:

= mtry: numero de atributos que serao selecionados aleatoriamente em cada arvore.

EEEEEEEEE

23

Ajuste de Parametros

e Arvore XGBoost:
= nrounds: numero de iteracdes de boosting.
= max_depth: profundidade maxima permitida para cada arvore.

m eta:taxa de aprendizado que controla a contribuicao de cada arvore ao modelo
final.

m gamma: controla a complexidade das arvores através da penalizacao do crescimento
do no. Valores mais altos levam a uma poda mais agressiva.

m colsample_bytree: Fracao de colunas a serem amostradas aleatoriamente em cada
iteracao de construcao da arvore.

" min_child_weight: peso minimo necessario para criar um novo nd na arvore.

= subsample: fracao de observacoes (ou linhas) a serem amostradas aleatoriamente
em cada iteracao de construcao da arvore.

EEEEEEEEE

Ajuste de Parametros

24

e Caso vocé esqueca os parametros de um modelo no R, use a funcao modelLookup() do

pacote caret.

library(caret)
modelLookup("C5.0")

model parameter label forReg forClass probModel
1 C5.0 trials # Boosting Iterations FALSE TRUE TRUE
2 C5.0 mode l Model Type FALSE TRUE TRUE
3 C5.0 winnow Winnow FALSE TRUE TRUE
mode lLLookup("rpart")

model parameter label forReg forClass probModel
1 rpart cp Complexity Parameter TRUE TRUE TRUE

e Para saber os modelos e parametros disponiveis no pacote caret, acesse:
https://topepo.github.io/caret/available-models.html

EEEEEEEEE

https://topepo.github.io/caret/available-models.html

25

Ajuste de Parametros

e O processo de definir os valores mais adequados para os hiperparametros € chamado
de gjuste de parametros (ou tuning de parametros).

e O ajuste costuma ser feito via busca em grade (grid search) e consiste em trés etapas:

1. Criar uma grade de hiperparametros possiveis a serem avaliados;

2. Construir um modelo baseado em cada combinacao de hiperparametros;
3. Escolher aquele com melhor performance segundo alguma métrica.

e O ajuste de parametros pode ser realizado de forma automatica ou customizada
(quando o espaco de busca € escolhido pelo usuario).

EEEEEEEEE

26

Ajuste de Parametros

1. Crie uma grade de parametros | 2. Use k-fold cross validation para avaliar 3. Selecione o modelo com a combinacao
a serem considerados. a performance de cada modelo. que aprensenta melhor performance.

Modelo 1
Acuracia

média Model | Alpha Gamma | Accuracy
1 1 A TRUE 0.90

Modelo 2 1 FALSE
O OTTITTTTH Acuracia
: meédia
Modelo 3
UeY) Acurdcia
meédia

(K

h.ad UNIVERSIDADE
"\,‘ FEDERAL DE
% 7 SERGIPE

27

Ajuste de Parametros

e Afuncdo train() do pacote caret possui 0s seguintes argumentos:

= form: especifica a variavel de saida e as variaveis de entrada. Ex.:y ~ x1 + x2 +

m data: especifica os dados de treino.

m metric: especifica a métrica usada para avaliar o desempenho do modelo durante o
treinamento. Usamos “RMSE” e “Rsquared” para regressao e “Accuracy” e “Kappa”
para classificacao.

= method: especifica o método de aprendizado de maquina.

= trControl: para ajuste customizado. Permite controlar o processo de treinamento,

incluindo opcoes como validacao cruzada, repeticao do treinamento e selecao de
modelo.

= tuneGrid: valores dos hiperparametros do método a serem testados.

EEEEEEEEE

Ajuste de Parametros

Exemplo:

e Ajuste automatico:

modelo <- train(

Y —
data =
metric

method

trControl = trainControl(method

)

dados_treino,

"Accuracy",
"rf",

"cv'", number

28

IIIIIIIIIIII
EEEEEEEEE

Ajuste de Parametros

Exemplo:
e Ajuste customizado:

modelo <- train(

Y =
data = dados_treino,
metric = "Accuracy",

method = "rf",

tuneGrid = expand.grid(mtry = 1:10), # testar mtry de 1 a 10
trControl = trainControl(method = "cv", number = 10)

)

29

IIIIIIIIIIII
EEEEEEEEE

Agora vamos fazer no R...

